State-dependent Decision-making in Brainwide Neural Circuits
全脑神经回路中的状态相关决策
基本信息
- 批准号:10461991
- 负责人:
- 金额:$ 365.01万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-15 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:AffectAnatomyAnimalsAreaAxonBar CodesBehaviorBehavioralBiological AssayBrainBrain regionCollaborationsCollectionCommunicationComputer ModelsComputing MethodologiesData AnalysesData CollectionData Science CoreData SetDecision MakingDevelopmentDiseaseEnvironmentEtiologyFoodGene ExpressionGeneticGoalsHistologyImpairmentIndividualInfrastructureInternationalLaboratoriesLearningMapsMeasurementMeasuresMethodsModelingMolecularMusMutationNeuronsPatternPopulationProtocols documentationReproducibilityResearchResearch PersonnelRewardsSchizophreniaStandardizationStructureTestingTrainingUltrasonographyWild Type MouseWorkaddictionautism spectrum disordercell typedata infrastructuredata sharingdeep learningexpectationexperimental studyflexibilityintegrated circuitlarge datasetslarge scale datamouse modelneural circuitneuromechanismnext generationnovelopen source tooloptogeneticsrelating to nervous systemtheoriestool
项目摘要
Summary/Abstract
Animals constantly make decisions, such as how to evaluate a potential threat or where to look for food. Yet the
same animal in the same environment can produce different decisions on different occasions, because its
internal state interacts powerfully with external inputs to determine behavior. This proposal’s overarching goal
is to understand how internal states influence decisions and to identify the underlying neural mechanisms. In a
mouse decision-making task, these experiments will examine the effects of three types of internal state changes:
those arising spontaneously with engagement and disengagement in a task, those resulting from changing
expectations during the task, and those resulting from learning within and across days. To determine how internal
states affect brain activity and behavior, the team will apply cutting-edge technical advances on a brainwide
scale, including statistical tools to infer internal states from behavior; simultaneous recordings from large
populations of neurons across many regions during behavior and during optogenetic perturbations; assays that
map functionally and molecularly defined cell-type-specific, cross-region connectivity; and computational
approaches to model how cross-region neural communication depends on internal states.
These ambitious goals go beyond the capabilities of an individual laboratory and are ideally suited for an already-
productive consortium. This team is part of the International Brain Laboratory, which has already developed a
standardized mouse decision-making task and standardized methods for training, neural measurement, and data
analysis, along with a working, scalable infrastructure for sharing data. The proposed research leverages this
existing infrastructure and takes it in a new direction. Projects 1-5 will examine simultaneously recorded
population activity, evaluate causality, study neural activity and behavior during learning in normal and autism
model mice, identify cell types by measuring neuronal activity, gene expression, and axonal projection patterns
in the same populations of neurons, and build a comprehensive computational model of all these experimental
results. Cores A-D will support the collection, replicability, management, and analysis of the large datasets
produced by this brainwide examination of neural circuits.
Taken together, the proposed research will rigorously define the neural basis of multiple internal states and
evaluate their impact on the flow of decision-relevant information through the brain. The results will greatly
advance the field by generating a comprehensive, mechanistic understanding of how internal states are reflected
in the brain, and how these states interact with external inputs to guide decisions. Moreover, the team will
produce and disseminate open-source tools and protocols that will enable other laboratories to collect and
manage large-scale datasets produced through brainwide measurements.
总结/摘要
动物不断地做出决定,例如如何评估潜在的威胁或在哪里寻找食物。然而
同样的动物在同样的环境中,在不同的场合会产生不同的决定,因为它
内部状态与外部输入有力地相互作用以决定行为。该提案的总体目标是
是了解内部状态如何影响决策,并确定潜在的神经机制。中
小鼠决策任务,这些实验将检查三种类型的内部状态变化的影响:
那些在任务中参与和脱离时自发产生的,那些由于变化而产生的,
任务期间的期望,以及那些在几天内和几天内学习产生的期望。为了确定内部
状态影响大脑活动和行为,该团队将在全脑范围内应用尖端技术进步,
规模,包括统计工具,以推断内部状态的行为;同时记录,从大
在行为期间和在光遗传学扰动期间跨越许多区域的神经元群体;
映射功能和分子定义的细胞类型特异性,跨区域连接性;和计算
方法来模拟跨区域神经通信如何依赖于内部状态。
这些雄心勃勃的目标超越了单个实验室的能力,非常适合已经-
生产性财团。这个团队是国际大脑实验室的一部分,该实验室已经开发了一种
标准化的小鼠决策任务和标准化的训练方法,神经测量和数据
沿着一个有效的、可扩展的数据共享基础设施。拟议的研究利用了这一点
现有的基础设施,并把它带到一个新的方向。项目1-5将同时检查记录
群体活动,评估因果关系,研究正常人和自闭症患者学习过程中的神经活动和行为
模型小鼠,通过测量神经元活动、基因表达和轴突投射模式来识别细胞类型
在相同的神经元群体中,并建立一个全面的计算模型,
结果核心A-D将支持大型数据集的收集、复制、管理和分析
是由全脑范围的神经回路检查产生的。
总之,拟议的研究将严格定义多种内部状态的神经基础,
评估它们对大脑中决策相关信息流的影响。结果将大大
通过对内部状态如何反映的全面、机械的理解来推进该领域
以及这些状态如何与外部输入相互作用以指导决策。此外,该团队将
制作和传播开源工具和协议,使其他实验室能够收集和
管理通过全脑测量产生的大规模数据集。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ANNE KATHRYN CHURCHLAND其他文献
ANNE KATHRYN CHURCHLAND的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ANNE KATHRYN CHURCHLAND', 18)}}的其他基金
Modularization and integration of the International Brain Laboratory spike-sorting pipeline into SpikeInterface
将国际脑实验室尖峰分选流程模块化并集成到 SpikeInterface 中
- 批准号:
10609320 - 财政年份:2022
- 资助金额:
$ 365.01万 - 项目类别:
Learning as a window into how internal states influence decision-making
学习作为了解内部状态如何影响决策的窗口
- 批准号:
10462000 - 财政年份:2021
- 资助金额:
$ 365.01万 - 项目类别:
State-dependent Decision-making in Brainwide Neural Circuits
全脑神经回路中的状态相关决策
- 批准号:
10669895 - 财政年份:2021
- 资助金额:
$ 365.01万 - 项目类别:
State-dependent Decision-making in Brainwide Neural Circuits
全脑神经回路中的状态相关决策
- 批准号:
10669676 - 财政年份:2021
- 资助金额:
$ 365.01万 - 项目类别:
Learning as a window into how internal states influence decision-making
学习作为了解内部状态如何影响决策的窗口
- 批准号:
10669700 - 财政年份:2021
- 资助金额:
$ 365.01万 - 项目类别:
State-dependent Decision-making in Brainwide Neural Circuits
全脑神经回路中的状态相关决策
- 批准号:
10294668 - 财政年份:2021
- 资助金额:
$ 365.01万 - 项目类别:
Learning as a window into how internal states influence decision-making
学习作为了解内部状态如何影响决策的窗口
- 批准号:
10294676 - 财政年份:2021
- 资助金额:
$ 365.01万 - 项目类别:
State-dependent Decision-making in Brainwide Neural Circuits
全脑神经回路中的状态相关决策
- 批准号:
10531784 - 财政年份:2021
- 资助金额:
$ 365.01万 - 项目类别:
The role of parietal cortex in multisensory decision-making
顶叶皮层在多感官决策中的作用
- 批准号:
8419054 - 财政年份:2013
- 资助金额:
$ 365.01万 - 项目类别:
Leveraging multisensory decisions to understand brain wide decision circuits
利用多感官决策来理解大脑范围的决策回路
- 批准号:
9913536 - 财政年份:2013
- 资助金额:
$ 365.01万 - 项目类别:
相似海外基金
Linking Epidermis and Mesophyll Signalling. Anatomy and Impact in Photosynthesis.
连接表皮和叶肉信号传导。
- 批准号:
EP/Z000882/1 - 财政年份:2024
- 资助金额:
$ 365.01万 - 项目类别:
Fellowship
Digging Deeper with AI: Canada-UK-US Partnership for Next-generation Plant Root Anatomy Segmentation
利用人工智能进行更深入的挖掘:加拿大、英国、美国合作开发下一代植物根部解剖分割
- 批准号:
BB/Y513908/1 - 财政年份:2024
- 资助金额:
$ 365.01万 - 项目类别:
Research Grant
Simultaneous development of direct-view and video laryngoscopes based on the anatomy and physiology of the newborn
根据新生儿解剖生理同步开发直视喉镜和视频喉镜
- 批准号:
23K11917 - 财政年份:2023
- 资助金额:
$ 365.01万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Genetics of Extreme Phenotypes of OSA and Associated Upper Airway Anatomy
OSA 极端表型的遗传学及相关上呼吸道解剖学
- 批准号:
10555809 - 财政年份:2023
- 资助金额:
$ 365.01万 - 项目类别:
computational models and analysis of the retinal anatomy and potentially physiology
视网膜解剖学和潜在生理学的计算模型和分析
- 批准号:
2825967 - 财政年份:2023
- 资助金额:
$ 365.01万 - 项目类别:
Studentship
Computational comparative anatomy: Translating between species in neuroscience
计算比较解剖学:神经科学中物种之间的翻译
- 批准号:
BB/X013227/1 - 财政年份:2023
- 资助金额:
$ 365.01万 - 项目类别:
Research Grant
Doctoral Dissertation Research: Social and ecological influences on brain anatomy
博士论文研究:社会和生态对大脑解剖学的影响
- 批准号:
2235348 - 财政年份:2023
- 资助金额:
$ 365.01万 - 项目类别:
Standard Grant
Development of a novel visualization, labeling, communication and tracking engine for human anatomy.
开发一种新颖的人体解剖学可视化、标签、通信和跟踪引擎。
- 批准号:
10761060 - 财政年份:2023
- 资助金额:
$ 365.01万 - 项目类别:
Understanding the functional anatomy of nociceptive spinal output neurons
了解伤害性脊髓输出神经元的功能解剖结构
- 批准号:
10751126 - 财政年份:2023
- 资助金额:
$ 365.01万 - 项目类别:
The Anatomy of Online Reviews: Evidence from the Steam Store
在线评论剖析:来自 Steam 商店的证据
- 批准号:
2872725 - 财政年份:2023
- 资助金额:
$ 365.01万 - 项目类别:
Studentship