How do glia remodel the nervous system?
神经胶质细胞如何重塑神经系统?
基本信息
- 批准号:10464236
- 负责人:
- 金额:$ 4.68万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-04-06 至 2024-10-05
- 项目状态:已结题
- 来源:
- 关键词:AdultAnimalsApoptosisAstrocytesBiological AssayBiological MetamorphosisBiological ModelsCell CompartmentationCell Surface ReceptorsCellsCessation of lifeDataDefectDevelopmentDrosophila genusExcisionFailureGenesGeneticGoalsHumanImmunoglobulinsIndividualIntegral Membrane ProteinKnock-outKnowledgeLarvaLeadMammalsMediatingMethodsModelingMolecularNamesNatureNervous system structureNeuraxisNeuritesNeurodevelopmental DisorderNeurogliaNeuronsNeuropilPathway interactionsPhagocytesPhagocytosisPlayProcessProteinsRNA InterferenceResearchRoleSchizophreniaSignal TransductionSpecific qualifier valueSpecificityStereotypingSynapsesSystemTestingTurtlesVisual system structureWorkautism spectrum disordercell typeflyhuman diseasein vivoinsightknock-downneuronal cell bodyneuronal circuitryneurotransmissionnovelreceptorresponsesensory inputtooltranscriptomics
项目摘要
Project Summary
A common feature of nervous systems is that they are initially overpopulated with neurons and over-wired, initially
generating an excessive number of synaptic connections. This is followed by an essential period of remodeling
whereby a subset of extraneous neurons or synaptic connections are removed in order to optimize function in
the adult nervous system. The elimination of cells and pruning of synapses is a process coordinated by neurons
and glia. The selection of specific connections or cells for elimination seems to involve a conversation between
neurons and glia, and the clearance of debris from the nervous system is performed predominantly by phagocytic
glial cells. Previous research has highlighted that the nervous system uses a diversity of molecules and
mechanisms to identify engulfment targets, which appear to be context-specific. However, major gaps still exist
in our knowledge of how neurons identify themselves to be remodeled and how glial cells recognize these dying
or pruning neurons. Studying these processes can potentially lead us to a better understanding of mechanisms
underlying neurodevelopmental disorders such as Autism Spectrum Disorders and Schizophrenia. Our lab has
employed Drosophila as a model system for several reasons including the powerful genetic tools and the
stereotyped nature of one of its remodeling periods—metamorphosis. Through transcriptomic profiling in
phagocytic astrocytes, I identified the transmembrane immunoglobulin superfamily gene borderless. My
preliminary data suggests that Bdl is highly expressed in astrocytes during engulfment periods early in
metamorphosis. Interestingly, loss of both Borderless (Bdl) and the known engulfment receptor Draper (MEGF10
in mammals) resulted in strong suppression of astrocyte engulfment of synapses and neurites. Bdl has been
described to interact with a closely related protein named Turtle, and my preliminary data further suggests Turtle
is specifically localized to neurites and synapses, and excluded from the cell body (the only compartment of the
cell that astrocytes do not engulf). Turtle may therefore act as a molecular tag for astrocytes to recognize
appropriate engulfment targets. In Aim 1 of this study, I will characterize Bdl expression in astrocytes, explore
genetic interactions between Bdl and Draper, and determine which domains of Bdl are essential for engulfment
activity. In Aim 2, I will 1) define genetic interactions between Bdl, Turtle, and Draper, 2) determine the cell
autonomy of Bdl and Turtle in the remodeling of corazonin neurons and 3) determine the subcellular localization
of Turtle positing me to explore Turtle as a molecular tag for specifying neurites for engulfment. My work has the
potential to define two novel components of the astrocytic engulfment machinery, (Bdl and Turtle), explore how
they converge with Draper/MEGF10, and identify Turtle as a neurite/synapse-specific molecular tag that directly
directs astrocyte engulfment activity. This work will significantly advance our understanding of the molecular
basis of neuron-glia signaling during neuronal remodeling, which will be essential for us to understand and treat
neurodevelopmental disorders in humans.
项目概要
神经系统的一个共同特征是,它们最初神经元数量过多且连接过度,最初
产生过多的突触连接。接下来是关键的改造时期
从而去除无关神经元或突触连接的子集,以优化功能
成人的神经系统。细胞的消除和突触的修剪是神经元协调的过程
和神经胶质细胞。选择特定的连接或单元进行消除似乎涉及到之间的对话
神经元和神经胶质细胞,神经系统碎片的清除主要是通过吞噬细胞进行的
胶质细胞。先前的研究强调,神经系统使用多种分子和
识别吞没目标的机制,这似乎是针对具体情况的。但仍存在重大差距
根据我们对神经元如何识别自己进行重塑以及神经胶质细胞如何识别这些死亡的了解
或修剪神经元。研究这些过程可能会让我们更好地理解机制
潜在的神经发育障碍,例如自闭症谱系障碍和精神分裂症。我们实验室有
采用果蝇作为模型系统有几个原因,包括强大的遗传工具和
其重塑时期之一——变态的刻板性质。通过转录组分析
吞噬星形胶质细胞,我鉴定出跨膜免疫球蛋白超家族基因无边界。我的
初步数据表明,Bdl 在星形胶质细胞早期吞噬期高度表达。
变态。有趣的是,无边界(Bdl)和已知的吞噬受体 Draper(MEGF10
在哺乳动物中)导致星形胶质细胞吞噬突触和神经突的强烈抑制。 BDL 已经
描述为与一种名为 Turtle 的密切相关蛋白质相互作用,我的初步数据进一步表明 Turtle
专门定位于神经突和突触,并被排除在细胞体之外(细胞体的唯一隔室)
星形胶质细胞不吞噬的细胞)。因此,海龟可能充当星形胶质细胞识别的分子标签
适当的吞没目标。在本研究的目标 1 中,我将表征星形胶质细胞中的 Bdl 表达,探索
Bdl 和 Draper 之间的遗传相互作用,并确定 Bdl 的哪些域对于吞噬至关重要
活动。在目标 2 中,我将 1) 定义 Bdl、Turtle 和 Draper 之间的遗传相互作用,2) 确定细胞
Bdl 和 Turtle 在 corazonin 神经元重塑中的自主性和 3) 确定亚细胞定位
Turtle 让我探索 Turtle 作为指定神经突吞噬的分子标签。我的作品有
有可能定义星形胶质细胞吞噬机制的两个新组件(Bdl 和 Turtle),探索如何
他们与 Draper/MEGF10 融合,并将 Turtle 识别为神经突/突触特异性分子标签,可直接
指导星形胶质细胞吞噬活动。这项工作将极大地增进我们对分子的理解
神经元重塑过程中神经元-胶质细胞信号传导的基础,这对于我们理解和治疗至关重要
人类神经发育障碍。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rachel Yvette De La Torre其他文献
Rachel Yvette De La Torre的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rachel Yvette De La Torre', 18)}}的其他基金
相似海外基金
The earliest exploration of land by animals: from trace fossils to numerical analyses
动物对陆地的最早探索:从痕迹化石到数值分析
- 批准号:
EP/Z000920/1 - 财政年份:2025
- 资助金额:
$ 4.68万 - 项目类别:
Fellowship
Animals and geopolitics in South Asian borderlands
南亚边境地区的动物和地缘政治
- 批准号:
FT230100276 - 财政年份:2024
- 资助金额:
$ 4.68万 - 项目类别:
ARC Future Fellowships
The function of the RNA methylome in animals
RNA甲基化组在动物中的功能
- 批准号:
MR/X024261/1 - 财政年份:2024
- 资助金额:
$ 4.68万 - 项目类别:
Fellowship
Ecological and phylogenomic insights into infectious diseases in animals
对动物传染病的生态学和系统发育学见解
- 批准号:
DE240100388 - 财政年份:2024
- 资助金额:
$ 4.68万 - 项目类别:
Discovery Early Career Researcher Award
RUI:OSIB:The effects of high disease risk on uninfected animals
RUI:OSIB:高疾病风险对未感染动物的影响
- 批准号:
2232190 - 财政年份:2023
- 资助金额:
$ 4.68万 - 项目类别:
Continuing Grant
RUI: Unilateral Lasing in Underwater Animals
RUI:水下动物的单侧激光攻击
- 批准号:
2337595 - 财政年份:2023
- 资助金额:
$ 4.68万 - 项目类别:
Continuing Grant
A method for identifying taxonomy of plants and animals in metagenomic samples
一种识别宏基因组样本中植物和动物分类的方法
- 批准号:
23K17514 - 财政年份:2023
- 资助金额:
$ 4.68万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Analysis of thermoregulatory mechanisms by the CNS using model animals of female-dominant infectious hypothermia
使用雌性传染性低体温模型动物分析中枢神经系统的体温调节机制
- 批准号:
23KK0126 - 财政年份:2023
- 资助金额:
$ 4.68万 - 项目类别:
Fund for the Promotion of Joint International Research (International Collaborative Research)
Using novel modelling approaches to investigate the evolution of symmetry in early animals.
使用新颖的建模方法来研究早期动物的对称性进化。
- 批准号:
2842926 - 财政年份:2023
- 资助金额:
$ 4.68万 - 项目类别:
Studentship
Study of human late fetal lung tissue and 3D in vitro organoids to replace and reduce animals in lung developmental research
研究人类晚期胎儿肺组织和 3D 体外类器官在肺发育研究中替代和减少动物
- 批准号:
NC/X001644/1 - 财政年份:2023
- 资助金额:
$ 4.68万 - 项目类别:
Training Grant














{{item.name}}会员




