Modeling cancer evolution for prediction with neural networks: methods and applications
利用神经网络对癌症进化进行建模以进行预测:方法和应用
基本信息
- 批准号:10467067
- 负责人:
- 金额:$ 24.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-01 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:AneuploidyAwardBiologyBiotechnologyCancer ModelCharacteristicsChromosome abnormalityClassificationClinicalCollaborationsComputational Molecular BiologyDNA DamageDataData ReportingData ScienceDecision MakingDevelopmentDevelopment PlansEventEvolutionGeneticGoalsGrantHumanInvestigationKnowledgeLearningLightMachine LearningMalignant NeoplasmsMedicalMentorsMethodologyMethodsMissionModelingMolecular EvolutionMutationOncogenicOutcomePathway interactionsPatternPerformancePhasePhenotypePostdoctoral FellowPublic HealthResearchResearch PersonnelRouteSolidTechniquesTherapeuticTimeTrainingUnited States National Institutes of HealthUnited States National Library of Medicineanticancer researchbasecancer typecareercareer developmentclinical decision-makingcomparative genomicscomputer studiescomputerized toolsdeep learningdriver mutationgenomic dataimprovedinnovationinsightlearning strategymathematical modelmemberneural networknovelnovel strategiespredict clinical outcomepredicting responserecurrent neural networkresponsetreatment responsetumortumor progressiontumorigenesis
项目摘要
PROJECT SUMMARY/ABSTRACT
The study of tumor evolution can uncover events and interactions that drive tumor development
through alternative routes, reveal differences in therapeutic vulnerabilities and improve clinical decision
making. Yet, studying tumor evolution is challenging, hindered by the difficulty to interpret noisy genomic
data and the lack of temporal ordering of major genetic events. There is therefore a critical need for the
development of computational approaches that can facilitate efficient investigation of cancer data under
an evolutionary, temporal perspective. The long-term goal of this project is to develop computational tools
combining advanced machine learning with molecular evolution techniques and provide novel strategies
to investigate tumor evolution. The overall objective is to establish a deep-learning framework to study
tumor development that will be used to distinguish early and late genetic events that are associated with
tumor characteristics, survival and therapeutic vulnerabilities. The rationale of the proposed research is
that the study of tumor evolution through integration of machine learning with molecular evolution
techniques could enhance the performance of otherwise difficult clinical classification tasks. The specific
aims of this project are to (1) Characterize the interplay between driver mutations and aneuploidy in tumor
evolution and identify determinants of clinical outcome and therapeutic vulnerabilities (2) Introduce
computational approaches to represent snapshot genomic data through temporal and functional ordering
of genetic events (3) Develop a recurrent neural network approach to learn different dynamics in tumor
evolution from ordered genomic data, and predict phenotypic features and clinical outcome. The
proposed research is innovative because it will combine recent advances in machine learning with
evolutionary techniques into a single framework, establishing novel computational tools that will facilitate
a comprehensive investigation of cancer development. The proposed framework is significant because it
will enable application of temporal modeling with machine learning to cancer data, for prediction of clinical
features. To achieve the proposed goals the candidate, Dr. Noam Auslander, requires additional training
and mentoring in evolutionary research, comparative genomics and mathematical modeling. During the
K99 phase, Dr. Auslander will conduct this research as a postdoctoral fellow at the National Center for
Biotechnology Information. She will be mentored by Dr. Eugene Koonin, a recognized expert in the fields
of molecular evolution and computational biology, and additional mentoring from senior members from
the Koonin lab. Together with her previous training in machine learning and cancer data science, this
application for the NIH Pathway to Independence Award (K99/R00) describes a career development plan
that will allow Dr. Auslander to achieve her career goals and become an independent investigator and
leader in computational research of cancer evolution.
项目总结/摘要
对肿瘤演变的研究可以揭示推动肿瘤发展的事件和相互作用
通过替代途径,揭示治疗弱点的差异,并改善临床决策
制作。然而,研究肿瘤进化是具有挑战性的,由于难以解释嘈杂的基因组序列,
数据和缺乏时间顺序的主要遗传事件。因此,迫切需要
发展计算方法,可以促进癌症数据的有效调查,
一个进化的、暂时的视角。这个项目的长期目标是开发计算工具
将先进的机器学习与分子进化技术相结合,
来研究肿瘤的演变总体目标是建立一个深度学习框架,
肿瘤的发展,将用于区分早期和晚期的遗传事件,与
肿瘤特征、存活率和治疗脆弱性。拟议研究的基本原理是
通过整合机器学习和分子进化来研究肿瘤进化
这些技术可以增强否则困难的临床分类任务的性能。具体
本项目的目的是(1)描述肿瘤中驱动突变和非整倍体之间的相互作用,
演变和确定临床结果和治疗脆弱性的决定因素(2)介绍
通过时间和功能排序表示快照基因组数据的计算方法
(3)开发一种循环神经网络方法来学习肿瘤中的不同动力学
从有序的基因组数据进化,并预测表型特征和临床结果。的
拟议的研究是创新的,因为它将联合收割机在机器学习方面的最新进展与
进化技术到一个单一的框架,建立新的计算工具,将促进
对癌症发展的全面调查拟议的框架意义重大,因为它
将使时间建模与机器学习应用于癌症数据,用于预测临床
功能.为了实现拟议的目标,候选人Noam Auslander博士需要接受额外的培训
并在进化研究、比较基因组学和数学建模方面提供指导。期间
K99阶段,Auslander博士将在国家中心作为博士后研究员进行这项研究,
生物技术信息.她将由该领域公认的专家尤金库宁博士指导
分子进化和计算生物学,以及来自
库宁实验室加上她之前在机器学习和癌症数据科学方面的培训,
申请NIH独立之路奖(K99/R 00)描述了职业发展计划
这将使Auslander博士能够实现她的职业目标,成为一名独立的调查员,
癌症进化计算研究的领导者。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Noam Auslander其他文献
Noam Auslander的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Noam Auslander', 18)}}的其他基金
Modeling cancer evolution for prediction with neural networks: methods and applications
利用神经网络对癌症进化进行建模以进行预测:方法和应用
- 批准号:
10675533 - 财政年份:2020
- 资助金额:
$ 24.9万 - 项目类别:
Modeling cancer evolution for prediction with neural networks: methods and applications
利用神经网络对癌症进化进行建模以进行预测:方法和应用
- 批准号:
10442077 - 财政年份:2020
- 资助金额:
$ 24.9万 - 项目类别:
相似海外基金
Open Access Block Award 2024 - The James Hutton Institute Biology
2024 年开放获取区块奖 - 詹姆斯·赫顿生物学研究所
- 批准号:
EP/Z532514/1 - 财政年份:2024
- 资助金额:
$ 24.9万 - 项目类别:
Research Grant
Open Access Block Award 2024 - MRC Laboratory of Molecular Biology
2024 年开放获取区块奖 - MRC 分子生物学实验室
- 批准号:
EP/Z532484/1 - 财政年份:2024
- 资助金额:
$ 24.9万 - 项目类别:
Research Grant
Open Access Block Award 2023 - MRC Laboratory of Molecular Biology
2023 年开放获取区块奖 - MRC 分子生物学实验室
- 批准号:
EP/Y529965/1 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
Research Grant
Research Initiation Award: Investigating Instructional Conditions for Robust Learning in Biology
研究启动奖:研究生物学稳健学习的教学条件
- 批准号:
2300454 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
Standard Grant
Open Access Block Award 2023 - The James Hutton Institute Biology
2023 年开放获取区块奖 - 詹姆斯·赫顿生物学研究所
- 批准号:
EP/Y530098/1 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
Research Grant
Open Access Block Award 2022 - MRC Laboratory of Molecular Biology
2022 年开放获取区块奖 - MRC 分子生物学实验室
- 批准号:
EP/X527038/1 - 财政年份:2022
- 资助金额:
$ 24.9万 - 项目类别:
Research Grant
Open Access Block Award 2022 - The James Hutton Institute Biology
2022 年开放获取区块奖 - 詹姆斯·赫顿生物学研究所
- 批准号:
EP/X527282/1 - 财政年份:2022
- 资助金额:
$ 24.9万 - 项目类别:
Research Grant
Catalyst Award: Enhancing the Academic Infrastructure in Biology at FVSU by Enriching Course Offerings and Faculty Development
催化剂奖:通过丰富课程设置和师资发展加强 FVSU 生物学学术基础设施
- 批准号:
2011847 - 财政年份:2020
- 资助金额:
$ 24.9万 - 项目类别:
Standard Grant
Taiwan Partnering Award: Mosquito Research - From Sensory Biology to Vector Control
台湾合作奖:蚊子研究 - 从感觉生物学到病媒控制
- 批准号:
BB/R021007/1 - 财政年份:2018
- 资助金额:
$ 24.9万 - 项目类别:
Research Grant
Group Travel Award: XIIth SCAR International Biology Symposium
团体旅行奖:第十二届SCAR国际生物学研讨会
- 批准号:
1704236 - 财政年份:2017
- 资助金额:
$ 24.9万 - 项目类别:
Standard Grant