Investigating the roles of Topoisomerase 3b-TDRD3 complex in neurodegeneration and Alzheimer's disease

研究拓扑异构酶 3b-TDRD3 复合物在神经退行性疾病和阿尔茨海默病中的作用

基本信息

  • 批准号:
    10469229
  • 负责人:
  • 金额:
    $ 21.36万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
  • 资助国家:
    美国
  • 起止时间:
  • 项目状态:
    未结题

项目摘要

Our group has discovered Top3b as the first dual-activity topoisomerase in eukaryotes(Xu et al., Nat. Neurosci., 2013). This discovery has greatly expanded the topoisomerase field, because it suggests that not only DNA, but also RNA, may have topological problems that require topoisomerases to solve. We have since discovered that Top3b is an RBP and the major mRNA-binding topoisomerase in mammalian cells, which forms a conserved complex with TDRD3. Top3b-TDRD3 interacts with an RBP, FMRP (Fragile-X Mental Retardation Protein); and they co-localize in SGs, co-fractionate in polyribosomes, and facilitate mRNA translation and synapse formation. Like other RBPs and SG components, Top3b mutations are associated with neurological disorders; and Top3b-KO mice display behavior and neurological defects observed in psychiatric and cognitive disorders (Joo et al., Nat. Comm. 2020). Furthermore, Top3b-TDRD3 interacts with RNA-induced silencing complex to promote heterochromatin formation and silencing of transposons in Drosophila (Lee et al., Nat. Comm., 2018). Recently, Top3b-TDRD3 has been shown to be required for efficient replication of positive-strand RNA virus, including SARS-CoV-2, suggesting that Top3b could be a drug target for COVID-19 and other pandemics caused by RNA virus. There are three main reasons that prompt us to investigate the roles of Top3b in AD and tauopathy. First, Top3b-TDRD3 is a component of SGs, which can act as pathological seeds where misfolded proteins can find low complexity proteins to aggregate, leading to AD and tauopathy. Neuronal toxicity induced by Tau, TDP-43 and C90orf72 can be alleviated by genetic reduction of SG components; or by inhibition of the kinases that initiate SG assembly. Thus, SGs have been suggested as a drug target for neurodegeneration. Importantly, Top3b-TDRD3 KO human cells and Drosophila display accelerated dissociation of SGs. Moreover, genetic reduction of Top3b suppresses Tau-induced neurodegeneration in Drosophila. The findings support the notion that Top3b could be a target for tauopathy like other SG components. Second, we discovered that several genes that show defective transcription in Top3b-KO mouse brains are critical for AD, such as APP and Tau (11). This suggests that genetic reduction of Top3b may decrease the levels of these pathogenic proteins, leading to suppression of neurodegeneration. Third, we found that Top3b biochemically and genetically interacts with piRNA machinery to promote silencing of transposable elements (TEs) in flies; and this biochemical interaction is conserved in mice. TE dysregulation has been observed in AD patients and animal models of tauopathy. Moreover, they have been suggested as drivers in aging, age-associated inflammation and neurodegeneration. We plan to study whether Top3b and Tau may work together in piRNA and/or other pathways to promote TE silencing. Specific Aims Aim 1. Use cell lines to study if Top3b-TDRD3 regulates normal and tau-induced SG dynamics and cellular toxicity Sub-Aim 1-1. Study how Top3b-TDRD3 functions in normal SGs We have obtained Top3b and TDRD3-KO HeLa cells; and found that SG assembly is normal, but SG disassembly is accelerated in both KO cells. We have identified a new interacting partner, PRRC2A/C, which is a known SG component; and found that this protein genetically interacts with TDRD3 in Drosophila animal survival and eye development. Sub-Aim 1-2. Study if and how Top3b-TDRD3 affects tau-associated SGs and toxicity Strategy: Depletion of TIA1 (a SG component) can reduce tau-induced granules and associated cellular toxicity in cell lines. We plan to use the same strategy: introduce Tau variants into WT or KO HeLa cells, and then determine if KO cells have reduced number and faster disassembly of tau-positive granules, decreased cell death, and lower cellular sensitivity to secondary stress. Aim 2. Investigate whether and how Top3b mutation can modify the neurodegeneration phenotype of Drosophila tauopathy model. Sub-Aim 2-1. Study whether genetic reduction of Top3b-TDRD3 can modify Tau-induced neurodegeneration Preliminary results: we found that Top3b heterozygous mutation can suppress, whereas TDRD3 mutant can enhance, the neurodegeneration eye phenotype of Tau-V337M mutant. The data imply that an inhibitor of Top3b may alleviate Tau-induced neurodegeneration. We plan to develop such an inhibitor in Aim 4. Sub-Aim 2-2 Studying the mechanism of how Top3b mutation suppresses Tau-induced neurotoxicity Preliminary results: We found that the dissociation of SGs in Top3b KO or TDRD3 KO Drosophila wing disc cells is significantly faster than WT, which is consistent with our findings in Hela cells. Sub-Aim 2-3. Study whether Top3b and Tau act in the same or different pathways in TE silencing. Preliminary Results: We found that Top3b and piRNA machinery interact biochemically and genetically to silence transposons in Drosophila ovary, as Top3b-piRNA double mutant exhibits higher levels of several TEs than each single mutant. Aim 3. Investigate whether Top3b mutations can modify the neurodegeneration phenotype of tauopathy mouse models. We plan to start work on this aim once our Alzheimer's disease Concept is approved by BSC. Aim 4. Investigate whether topoisomerase can be a druggable target for neurodegeneration. We have already obtained some compounds that inhibits topoisomerase activity, but their Kd is still too high (46). We will continue our collaboration to identify compounds with higher potency. Update of Progress: Outline of the original aims of the project We have proposed to use the Drosophila model to examine the roles of Topoisomerase 3beta (Top3b) in Alzheimers disease (AD), amyotrophic lateral sclerosis (ALS), and frontotemporal lobar degeneration (FTLD). The original aims of the project are: 1. Investigate whether and how Top3 mutations can modify the neurodegeneration phenotype of Drosophila Tauopathy model. 2. Study whether and how Top3 mutations can modify the neurodegeneration phenotype of Drosophila TDP-43 model. 3. Study whether FANCM plays a role in heterochromatin formation and TE silencing in Drosophila. 4. Investigate how Top3b/TDRD3 regulates mRNA degradation and translation using Drosophila. Update on current progress Aim1. Progress 1. Top3b and Tdrd3 mutations may modify neurodegeneration induced by Tau-V337M mutant Expression of pathogenic mutant hTau in fly eyes can cause progressive degeneration of optic nerve, resulting in rough eye phenotype (Wittmann et al., Science, 2001). We found that Tdrd3 mutation dominantly enhances Tau-V337M induced rough eye phenotype, whereas addition of Top3b mutant exhibits an inconsistent modification. Our data suggest that TDRD3 can suppress neurodegeneration induced by at least one Tau mutant. Aim1. Progress 2. Top3b-Tdrd3 complex promotes piRNA biogenesis and silencing of transposable elements (TEs). 1. Our unbiased interaction assay (IP-MS) identified that Top3b and Tdrd3 biochemically interact with key piRNA machinery components including: Piwi, Aubergine and Armitage. 2. Based on to reporter assays and RNA-seq, we found that both Top3b and Tdrd3 promote piRNA guided TE silencing. 3. Our genetic interaction screen identified that Top3b specifically coordinates with piRNA biogenesis components in piRNA pathway. Specifically, we generated 15 double mutants of key genes in piRNA pathways in Top3b KO mutant background flies and identified 7 positive hits (Aub, AGO3, vasa, mael, mago, armi, and zuc) (Figure 1A-C). Notably, all positive genetic interactors are involved in piRNA biogenesis. Furthermore, Top3b-/- with piRNA component double mutants show depletion of piRNA levels (Figure 1D,E), suggesting that Top3b promotes TE silencing by enhancing piRNA biogenesis.
本课小组发现Top3b是真核生物中第一个双活性拓扑异构酶(Xu et al., Nat. Neurosci.)。, 2013)。这一发现极大地扩展了拓扑异构酶的研究领域,因为它表明,不仅DNA, RNA也可能存在需要拓扑异构酶来解决的拓扑问题。我们已经发现,在哺乳动物细胞中,Top3b是一种RBP和主要的mrna结合拓扑异构酶,它与TDRD3形成一个保守的复合物。Top3b-TDRD3与RBP、FMRP(脆性- x智力迟钝蛋白)相互作用;它们在SGs中共定位,在多核糖体中共分离,促进mRNA翻译和突触形成。与其他rbp和SG成分一样,Top3b突变与神经系统疾病有关;Top3b-KO小鼠在精神和认知障碍中表现出行为和神经缺陷(Joo et al., Nat. Comm. 2020)。此外,Top3b-TDRD3与rna诱导的沉默复合体相互作用,促进果蝇异染色质形成和转座子沉默(Lee et al., Nat. Comm., 2018)。最近,研究表明Top3b- tdrd3是包括SARS-CoV-2在内的正链RNA病毒有效复制所必需的,这表明Top3b可能成为COVID-19和其他RNA病毒引起的大流行的药物靶点。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Weidong Wang其他文献

Weidong Wang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Weidong Wang', 18)}}的其他基金

Developing proinsulin misfolding inhibitors for beta cell protection and diabetes treatment
开发用于 β 细胞保护和糖尿病治疗的胰岛素原错误折叠抑制剂
  • 批准号:
    10529960
  • 财政年份:
    2022
  • 资助金额:
    $ 21.36万
  • 项目类别:
Developing proinsulin misfolding inhibitors for beta cell protection and diabetes treatment
开发用于 β 细胞保护和糖尿病治疗的胰岛素原错误折叠抑制剂
  • 批准号:
    10665748
  • 财政年份:
    2022
  • 资助金额:
    $ 21.36万
  • 项目类别:
Preclinical Validation of PPARg Acetylation Inhibitors for Diabetes Prevention and Treatment
PPARg 乙酰化抑制剂预防和治疗糖尿病的临床前验证
  • 批准号:
    10580851
  • 财政年份:
    2021
  • 资助金额:
    $ 21.36万
  • 项目类别:
Cytoprotection and the mechanism of action of a natural product Khellin against ER stress
天然产物 Khellin 对抗 ER 应激的细胞保护和作用机制
  • 批准号:
    9974514
  • 财政年份:
    2018
  • 资助金额:
    $ 21.36万
  • 项目类别:
Cytoprotection and the mechanism of action of a natural product Khellin against ER stress
天然产物 Khellin 对抗 ER 应激的细胞保护和作用机制
  • 批准号:
    10285537
  • 财政年份:
    2018
  • 资助金额:
    $ 21.36万
  • 项目类别:
Preclinical Development of Khellin Analogs for Anti-Diabetic Therapy
用于抗糖尿病治疗的 Khellin 类似物的临床前开发
  • 批准号:
    9336063
  • 财政年份:
    2016
  • 资助金额:
    $ 21.36万
  • 项目类别:
Preclinical Development of Khellin Analogs for Anti-Diabetic Therapy
用于抗糖尿病治疗的 Khellin 类似物的临床前开发
  • 批准号:
    9353780
  • 财政年份:
    2016
  • 资助金额:
    $ 21.36万
  • 项目类别:
Identification and Characterization of human Rsc Chromatin-Remodeling Complex
人类 Rsc 染色质重塑复合物的鉴定和表征
  • 批准号:
    6431445
  • 财政年份:
  • 资助金额:
    $ 21.36万
  • 项目类别:
Identification/characterization Complex-Bloom Syndrome
复杂布卢姆综合症的鉴定/表征
  • 批准号:
    7132305
  • 财政年份:
  • 资助金额:
    $ 21.36万
  • 项目类别:
Characterization Complex Involved In Rothmund-Thomson
Rothmund-Thomson 涉及的表征复合体
  • 批准号:
    7132306
  • 财政年份:
  • 资助金额:
    $ 21.36万
  • 项目类别:

相似海外基金

Hormone therapy, age of menopause, previous parity, and APOE genotype affect cognition in aging humans.
激素治疗、绝经年龄、既往产次和 APOE 基因型会影响老年人的认知。
  • 批准号:
    495182
  • 财政年份:
    2023
  • 资助金额:
    $ 21.36万
  • 项目类别:
Investigating how alternative splicing processes affect cartilage biology from development to old age
研究选择性剪接过程如何影响从发育到老年的软骨生物学
  • 批准号:
    2601817
  • 财政年份:
    2021
  • 资助金额:
    $ 21.36万
  • 项目类别:
    Studentship
RAPID: Coronavirus Risk Communication: How Age and Communication Format Affect Risk Perception and Behaviors
RAPID:冠状病毒风险沟通:年龄和沟通方式如何影响风险认知和行为
  • 批准号:
    2029039
  • 财政年份:
    2020
  • 资助金额:
    $ 21.36万
  • 项目类别:
    Standard Grant
Neighborhood and Parent Variables Affect Low-Income Preschool Age Child Physical Activity
社区和家长变量影响低收入学龄前儿童的身体活动
  • 批准号:
    9888417
  • 财政年份:
    2019
  • 资助金额:
    $ 21.36万
  • 项目类别:
The affect of Age related hearing loss for cognitive function
年龄相关性听力损失对认知功能的影响
  • 批准号:
    17K11318
  • 财政年份:
    2017
  • 资助金额:
    $ 21.36万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
  • 批准号:
    9320090
  • 财政年份:
    2017
  • 资助金额:
    $ 21.36万
  • 项目类别:
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
  • 批准号:
    10166936
  • 财政年份:
    2017
  • 资助金额:
    $ 21.36万
  • 项目类别:
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
  • 批准号:
    9761593
  • 财政年份:
    2017
  • 资助金额:
    $ 21.36万
  • 项目类别:
How age dependent molecular changes in T follicular helper cells affect their function
滤泡辅助 T 细胞的年龄依赖性分子变化如何影响其功能
  • 批准号:
    BB/M50306X/1
  • 财政年份:
    2014
  • 资助金额:
    $ 21.36万
  • 项目类别:
    Training Grant
Inflamm-aging: What do we know about the effect of inflammation on HIV treatment and disease as we age, and how does this affect our search for a Cure?
炎症衰老:随着年龄的增长,我们对炎症对艾滋病毒治疗和疾病的影响了解多少?这对我们寻找治愈方法有何影响?
  • 批准号:
    288272
  • 财政年份:
    2013
  • 资助金额:
    $ 21.36万
  • 项目类别:
    Miscellaneous Programs
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了