Mechanisms underpinning meiotic spindle formation and behavior
减数分裂纺锤体形成和行为的基础机制
基本信息
- 批准号:10468208
- 负责人:
- 金额:$ 37.92万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:AblationAneuploidyBehaviorBiochemicalBiological ModelsBipolar ICell divisionCellsCentriolesCentrosomeChromosome SegregationDataDevelopmentDown SyndromeEnsureEventF-ActinFemaleFluorescenceFoundationsGeneticGenomeGerm CellsGoalsHaploidyImageInfertilityKnowledgeLasersLeadLightMaintenanceMediatingMeiosisMicrotubule-Organizing CenterMicrotubulesMitoticMolecularMusOocytesPeripheralPositioning AttributeProcessProteinsPublic HealthRegulationReporterSpontaneous abortionTransgenic Micedevelopmental diseaseeggmalemigrationmouse modelnovelspatiotemporalsperm cell
项目摘要
Project summary
Meiosis is a specialized set of cell divisions that produce haploid gametes. During meiosis I (MI) in females,
bipolar spindle formation and positioning within the oocyte must be regulated tightly to ensure faithful
chromosome segregation and proper genome inheritance. In somatic mitotic cells, bipolar spindle formation
and positioning rely on a centrosome pair, each of which contains two centrioles. Interestingly, meiotic oocytes
lack centrioles and, hence, lack classic centrosomes. Meiotic oocytes, instead, contain numerous microtubule
(MT) organizing centers (MTOCs) that are organized, by largely unknown mechanisms, to establish two
spindle poles (polar MTOCs). The traditional view was that, in mammalian oocytes, MTs (and their associated
proteins) are the only cytoskeletal components responsible for organizing such MTOC spindles. However,
recent data suggest that F-actin is also involved in spindle bipolarity regulation. How F-actin interacts with MTs
to regulate polar MTOC organization during MI represents a critical gap in our understanding of how the
meiotic spindle is built. We recently identified a novel, functionally different, class of MTOCs (mcMTOCs) and
found that spindle maintenance at the oocyte center is regulated by two opposing forces (mcMTOC-mediated
MTs vs. F-actin). We also recently observed that ~50% of spindles are not assembled centrally. To date, such
peripheral spindle assembly was unobservable owing to technical limitations associated with spindle
fluorescence (i.e. live imaging). To circumvent this, we generated a Cep192-eGfp reporter mouse model
enabling spindle tracking wherever it is assembled. Strikingly, peripheral spindle formation is typically followed
by spindle migration towards the center – a previously undocumented phenomenon. Understanding the
molecular mechanisms regulating this corrective developmental event represents a major gap in our
knowledge of meiotic spindle spatiotemporal regulation during MI. This proposal lays the foundations for our
long-term goal: To understand how two critical events during MI — bipolar spindle assembly and positioning —
are regulated, in the absence of centrioles, to ensure faithful chromosome segregation. To do so, we will utilize
state-of-the-art approaches, including transgenic mouse models, genetic constructs, laser ablation, and
cutting-edge imaging, to tackle three critical goals: (i) determine how F-actin interacts with MTs to organize
polar MTOCs during bipolar spindle building, (ii) establish the mechanism(s) by which the peripheral
acentriolar spindle migrates to the oocyte center, and (iii) determine whether differences in biochemical
compositions of mcMTOCs vs. polar MTOCs underlie their functional differences. Given that chromosome
segregation errors (very common during MI) lead to aneuploidy, the leading genetic cause of developmental
disorders and miscarriage, these studies have the potential to significantly advance our basic understanding of
two fundamental processes — spindle formation and positioning — during MI whilst simultaneously shedding
light on why MI is notoriously error prone.
项目摘要
减数分裂是产生单倍体配子的一组特殊的细胞分裂。在雌性减数分裂I(MI)期间,
卵母细胞内双极纺锤体的形成和定位必须严格调节,以确保卵母细胞的忠实性。
染色体分离和适当的基因组遗传。在体细胞有丝分裂中,双极纺锤体形成
和定位依赖于一对中心体,每个中心体包含两个中心粒。有趣的是,减数分裂卵母细胞
缺乏中心粒,因此缺乏典型的中心体。相反,减数分裂卵母细胞含有大量微管,
(MT)组织中心(MTOC),由基本上未知的机制组织起来,建立两个
纺锤极(极性MTOC)。传统观点认为,在哺乳动物卵母细胞中,MT(及其相关的
蛋白质)是负责组织这种MTOC纺锤体的唯一细胞骨架组分。然而,在这方面,
最近的数据表明,F-肌动蛋白也参与纺锤体双极性调节。F-actin如何与MT相互作用
在MI期间调节极性MTOC组织代表了我们对如何理解的关键差距,
减数分裂纺锤体形成。我们最近发现了一种新的、功能不同的MTOC(mcMTOC),
发现卵母细胞中心纺锤体的维持受两种相反的力量(mcMTOC介导的
MT相对于F-肌动蛋白)。我们最近还观察到,约50%的锭子不是集中组装的。迄今为止,
由于与主轴相关的技术限制,无法观察到外围主轴组件
荧光(即实时成像)。为了避免这一点,我们产生了Cep 192-eGfp报告基因小鼠模型,
使得主轴能够在任何装配位置进行跟踪。引人注目的是,外周纺锤体的形成通常遵循
纺锤体向中心迁移--这是一种以前没有记录的现象。了解
调节这种纠正性发育事件的分子机制代表了我们在这方面的一个主要空白。
MI期间减数分裂纺锤体时空调控的知识。这一建议为我们的
长期目标:了解MI期间的两个关键事件-双极主轴组装和定位-
在中心粒不存在的情况下,被调节以确保忠实的染色体分离。为此,我们将利用
最先进的方法,包括转基因小鼠模型,遗传构建,激光消融,
尖端成像,以解决三个关键目标:(i)确定F-肌动蛋白如何与MT相互作用,以组织
(ii)建立外周MTOC在双极纺锤体构建过程中的机制,
无中心纺锤体迁移到卵母细胞中心,和(iii)确定生物化学差异是否
mcMTOC与极性MTOC的组成是它们功能差异的基础。考虑到这个染色体
分离错误(在MI期间非常常见)导致非整倍体,这是发育不良的主要遗传原因。
疾病和流产,这些研究有可能显着推进我们的基本理解,
两个基本过程--锭子形成和定位--在MI期间,同时开口
为什么MI是出了名的容易出错。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
AHMED BALBOULA其他文献
AHMED BALBOULA的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('AHMED BALBOULA', 18)}}的其他基金
Comparative analysis of molecular events in mammalian oocytes
哺乳动物卵母细胞分子事件的比较分析
- 批准号:
10755189 - 财政年份:2023
- 资助金额:
$ 37.92万 - 项目类别:
Mechanisms underpinning meiotic spindle formation and behavior
减数分裂纺锤体形成和行为的基础机制
- 批准号:
10274040 - 财政年份:2021
- 资助金额:
$ 37.92万 - 项目类别:
Mechanisms underpinning meiotic spindle formation and behavior
减数分裂纺锤体形成和行为的基础机制
- 批准号:
10693863 - 财政年份:2021
- 资助金额:
$ 37.92万 - 项目类别:
Mechanisms underpinning meiotic spindle formation and behavior
减数分裂纺锤体形成和行为的基础机制
- 批准号:
10581903 - 财政年份:2021
- 资助金额:
$ 37.92万 - 项目类别:
相似海外基金
Elucidating the effects of extra chromosome elimination in mosaic aneuploidy syndromes: Pallister-Killian syndrome as a model
阐明额外染色体消除对嵌合非整倍体综合征的影响:以 Pallister-Killian 综合征为模型
- 批准号:
10887038 - 财政年份:2023
- 资助金额:
$ 37.92万 - 项目类别:
Characterization of aneuploidy, cell fate and mosaicism in early development
早期发育中非整倍性、细胞命运和嵌合体的表征
- 批准号:
10877239 - 财政年份:2023
- 资助金额:
$ 37.92万 - 项目类别:
The impact of aneuploidy on early human development
非整倍体对人类早期发育的影响
- 批准号:
MR/X007979/1 - 财政年份:2023
- 资助金额:
$ 37.92万 - 项目类别:
Research Grant
Understanding how aneuploidy disrupts quiescence in the model eukaryote Saccharomyces cerevisiae
了解非整倍体如何破坏模型真核生物酿酒酵母的静止状态
- 批准号:
10735074 - 财政年份:2023
- 资助金额:
$ 37.92万 - 项目类别:
Preventing Age-Associated Oocyte Aneuploidy: Mechanisms Behind the Drosophila melanogaster Centromere Effect
预防与年龄相关的卵母细胞非整倍性:果蝇着丝粒效应背后的机制
- 批准号:
10538074 - 财政年份:2022
- 资助金额:
$ 37.92万 - 项目类别:
Functional evaluation of kinesin gene variants associated with female subfertility and egg aneuploidy.
与女性生育力低下和卵子非整倍性相关的驱动蛋白基因变异的功能评估。
- 批准号:
10537275 - 财政年份:2022
- 资助金额:
$ 37.92万 - 项目类别:
Using CRISPR screening to uncover aneuploidy-specific genetic dependencies
使用 CRISPR 筛选揭示非整倍体特异性遗传依赖性
- 批准号:
10661533 - 财政年份:2022
- 资助金额:
$ 37.92万 - 项目类别:
Comparative Analysis of Aneuploidy and Cellular Fragmentation Dynamics in Mammalian Embryos
哺乳动物胚胎非整倍性和细胞破碎动力学的比较分析
- 批准号:
10366610 - 财政年份:2022
- 资助金额:
$ 37.92万 - 项目类别:
FASEB SRC: The Consequences of Aneuploidy: Honoring the Contributions of Angelika Amon
FASEB SRC:非整倍体的后果:纪念 Angelika Amon 的贡献
- 批准号:
10467260 - 财政年份:2022
- 资助金额:
$ 37.92万 - 项目类别:














{{item.name}}会员




