The Intracellular Pathogen Response Triggers Defense Against Co-evolved Pathogens
细胞内病原体反应触发针对共同进化病原体的防御
基本信息
- 批准号:10468643
- 负责人:
- 金额:$ 35.77万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-08-01 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAnimal ModelAnimalsBiochemicalCaenorhabditis elegansCellsCo-ImmunoprecipitationsCommunicable DiseasesCrohn&aposs diseaseCryoelectron MicroscopyDevelopmentDiarrheaDiseaseEpithelialEpithelial CellsGene ExpressionGene FamilyGenesGenetic ScreeningGenetic TranscriptionGenetic studyGoalsHealthHumanImmuneImmune responseImmunityInfectionInfection ControlInflammatoryInflammatory Bowel DiseasesIntegration Host FactorsInvadedKnowledgeLeadLearningMethodsMicrobeMicrosporidiaMissionMolecular StructureMusMutationNamesNematodaOperonOrganismOutcomeParasitesPathway interactionsPhenotypePhysiologicalPlayPneumoniaProcessProteinsPublic HealthRNA InterferenceRecombinantsResearchResistanceRoleSequence AnalysisStructureStudy modelsSystemTimeTissuesUnited States National Institutes of HealthViralVirulence FactorsVirusVirus DiseasesWorkX-Ray Crystallographybasebiological adaptation to stressburden of illnessenteric infectionenteric pathogenfitnessinfectious disease treatmentinnovationinsightintestinal epitheliumloss of function mutationmutantnovelparalogous genepathogenpreventprogramsprotein complexprotein structureresponsestressortargeted treatmentubiquitin ligasevirtual
项目摘要
Project Summary
Infectious diseases impose a significant burden on human health, with epithelial cells on the front lines
of attack by disease-causing microbes that can invade and replicate inside of these cells. In addition to
diseases such as diarrhea and pneumonia caused by pathogens, inappropriate activation of defense pathways
in epithelial cells can lead to inflammatory disease. Therefore, it is critical learn more about epithelial defense
against intracellular pathogens. In particular, little is known about defense against the Microsporidia phylum of
fungal-related intracellular parasites, 14 of which can infect and cause disease in humans, most commonly
infecting intestinal epithelial cells. We have developed a convenient whole-animal model for studying defense
against microsporidia through characterization of natural intestinal infection in the nematode C. elegans. Our
long-term goal is to dissect the mechanisms by which epithelial cells defend against co-evolved intracellular
pathogens like microsporidia. Closing this gap in our understanding will provide new insights for treating
infectious disease and inflammatory disorders. Our central hypothesis is that attack from co-evolved pathogens
causes expansion and diversification of host genes to become ‘species-specific’ although these genes may
control conserved immune pathways. The objective here is to characterize the species-specific pals gene
family, which expanded to 39 pals genes in C. elegans, whereas there is only one pals gene in humans.
Virtually nothing is known about PALS protein structure or biochemical function in any system, although they
have been connected to ubiquitin ligases through sequence analysis and genetic studies in C. elegans.
We found PALS-22 and PALS-25 to be key regulators of a common transcriptional response to natural
microsporidia and viral infections in C. elegans that we call the Intracellular Pathogen Response or IPR. The
IPR appears to define an entire physiological program and our forward genetic screens identified PALS-22 as
a negative regulator and PALS-25 as a positive regulator of the IPR. Loss of PALS-22 leads to enhanced
immunity against intracellular pathogens, increased RNA interference, as well as fitness consequences such
as delayed development, all of which depend on PALS-25. In Specific Aim 1 we will characterize the
relationship between gene expression and immune responses regulated by PALS-22 and PALS-25, identify
the tissues where they act, and define the stage of microsporidia they target. In Specific Aim 2 we will
recombinantly express PALS-22 and PALS-25 proteins to characterize their interaction, as well as their
structure using X-ray crystallography and cryo EM. In Specific Aim 3 we will analyze the role of other PALS
proteins, RNAi machinery and identify new regulators of the IPR. The approach is innovative as it focuses on
uncharacterized proteins that regulate a novel form of epithelial immunity. The proposed research is significant,
because it could lead to new treatments for infectious diseases and inflammatory disorders.
项目摘要
传染病对人类健康施加了重大燃烧,前线上皮细胞
可以在这些细胞内部侵入和复制的引起疾病的微生物发作。此外
病原体引起的腹泻和肺炎等疾病,防御途径不适当激活
在上皮细胞中会导致炎症性疾病。因此,至关重要的是关于上皮防御的更多信息
针对细胞内病原体。特别是,关于针对微孢子虫门的防御知之甚少
与真菌相关的细胞内寄生虫,其中14个会感染并引起人类疾病,最常见
感染肠上皮细胞。我们已经开发了一个方便的全动物模型来研究防御
通过表征线虫秀丽隐杆线虫中天然肠道感染的特征,以对抗微孢子虫。我们的
长期目标是剖析上皮细胞防御共同进化的细胞内的机制
病原体如微孢子虫。在我们的理解中缩小这一差距将为治疗提供新的见解
传染病和炎症性疾病。我们的中心假设是共同进化的病原体的攻击
导致宿主基因的扩张和多样化成为“物种特异性”,尽管这些基因可能
控制配置的免疫途径。这里的目的是表征规格特异性的PAL基因
一家人在秀丽隐杆线虫中扩展到39个好朋友基因,而人类只有一个好朋友基因。
实际上,关于任何系统中的PALS蛋白结构或生化功能,几乎一无所知,尽管它们
通过秀丽隐杆线虫中的序列分析和遗传研究,已连接到泛素连接酶。
我们发现PALS-22和PALS-25是对自然的共同转录响应的关键调节剂
秀丽隐杆线虫中的微孢子虫和病毒感染,我们称为细胞内病原体反应或IPR。
IPR似乎定义了整个物理程序,而我们的正向遗传筛选将PALS-22确定为
负调节器和PALS-25作为IPR的积极调节剂。 PAL-22的损失导致增强
免疫对细胞内病原体的免疫力,RNA干扰增加以及适应性后果
作为延迟的发展,所有这些都取决于PALS-25。在特定目标1中,我们将表征
基因表达与由PALS-22和PALS-25调节的免疫反应之间的关系,鉴定
它们作用的组织,并定义其靶向的微孢子虫的阶段。在特定目标2中,我们将
重组表达PALS-22和PALS-25蛋白以表征它们的相互作用及其
使用X射线晶体学和冷冻EM结构。在特定目标3中,我们将分析其他朋友的作用
蛋白质,RNAi机械并确定知识产权的新调节剂。这种方法是创新的,因为它专注于
调节上皮免疫的新形式的未表征的蛋白质。拟议的研究很重要,
因为它可能导致有关传染病和炎症性疾病的新治疗方法。
项目成果
期刊论文数量(21)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Three-dimensional fluorescent microscopy via simultaneous illumination and detection at multiple planes.
- DOI:10.1038/srep31445
- 发表时间:2016-08-16
- 期刊:
- 影响因子:4.6
- 作者:Ma Q;Khademhosseinieh B;Huang E;Qian H;Bakowski MA;Troemel ER;Liu Z
- 通讯作者:Liu Z
The C. elegans CCAAT-Enhancer-Binding Protein Gamma Is Required for Surveillance Immunity.
- DOI:10.1016/j.celrep.2016.01.055
- 发表时间:2016-02-23
- 期刊:
- 影响因子:8.8
- 作者:Reddy KC;Dunbar TL;Nargund AM;Haynes CM;Troemel ER
- 通讯作者:Troemel ER
In vivo mapping of tissue- and subcellular-specific proteomes in Caenorhabditis elegans.
- DOI:10.1126/sciadv.1602426
- 发表时间:2017-05
- 期刊:
- 影响因子:13.6
- 作者:Reinke AW;Mak R;Troemel ER;Bennett EJ
- 通讯作者:Bennett EJ
Multiple pals gene modules control a balance between immunity and development in Caenorhabditis elegans.
多个 pals 基因模块控制着秀丽隐杆线虫免疫和发育之间的平衡。
- DOI:10.1101/2023.01.15.524171
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Lažetić,Vladimir;Blanchard,MichaelJ;Bui,Theresa;Troemel,EmilyR
- 通讯作者:Troemel,EmilyR
Discovery of a Natural Microsporidian Pathogen with a Broad Tissue Tropism in Caenorhabditis elegans.
- DOI:10.1371/journal.ppat.1005724
- 发表时间:2016-06
- 期刊:
- 影响因子:6.7
- 作者:Luallen RJ;Reinke AW;Tong L;Botts MR;Félix MA;Troemel ER
- 通讯作者:Troemel ER
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Emily R Troemel其他文献
Emily R Troemel的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Emily R Troemel', 18)}}的其他基金
Innate immunity against viral infection in intestinal epithelial cells of C. elegans
秀丽隐杆线虫肠上皮细胞对病毒感染的先天免疫
- 批准号:
10680767 - 财政年份:2023
- 资助金额:
$ 35.77万 - 项目类别:
Probing organismal proteostasis through the response to intracellular infection
通过对细胞内感染的反应探索机体蛋白质稳态
- 批准号:
9240120 - 财政年份:2017
- 资助金额:
$ 35.77万 - 项目类别:
Probing organismal proteostasis through the response to intracellular infection
通过对细胞内感染的反应探索机体蛋白质稳态
- 批准号:
9353488 - 财政年份:2016
- 资助金额:
$ 35.77万 - 项目类别:
Probing organismal proteostasis through the response to intracellular infection
通过对细胞内感染的反应探索机体蛋白质稳态
- 批准号:
10518300 - 财政年份:2016
- 资助金额:
$ 35.77万 - 项目类别:
Probing organismal proteostasis through the response to intracellular infection
通过对细胞内感染的反应探索机体蛋白质稳态
- 批准号:
10665771 - 财政年份:2016
- 资助金额:
$ 35.77万 - 项目类别:
Perturbation of core processes triggers host defense against pathogens
核心过程的扰动触发宿主对病原体的防御
- 批准号:
8860746 - 财政年份:2015
- 资助金额:
$ 35.77万 - 项目类别:
Perturbation of core processes triggers host defense against pathogens
核心过程的扰动触发宿主对病原体的防御
- 批准号:
9312823 - 财政年份:2015
- 资助金额:
$ 35.77万 - 项目类别:
The Intracellular Pathogen Response Triggers Defense Against Co-evolved Pathogens
细胞内病原体反应触发针对共同进化病原体的防御
- 批准号:
10218199 - 财政年份:2015
- 资助金额:
$ 35.77万 - 项目类别:
A natural host model for microsporidia pathogenesis in the intestine
肠道微孢子虫发病机制的自然宿主模型
- 批准号:
8204946 - 财政年份:2010
- 资助金额:
$ 35.77万 - 项目类别:
A natural host model for microsporidia pathogenesis in the intestine
肠道微孢子虫发病机制的自然宿主模型
- 批准号:
8415560 - 财政年份:2010
- 资助金额:
$ 35.77万 - 项目类别:
相似国自然基金
髋关节撞击综合征过度运动及机械刺激动物模型建立与相关致病机制研究
- 批准号:82372496
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
利用碱基编辑器治疗肥厚型心肌病的动物模型研究
- 批准号:82300396
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
利用小型猪模型评价动脉粥样硬化易感基因的作用
- 批准号:32370568
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
丁苯酞通过调节细胞异常自噬和凋亡来延缓脊髓性肌萎缩症动物模型脊髓运动神经元的丢失
- 批准号:82360332
- 批准年份:2023
- 资助金额:31.00 万元
- 项目类别:地区科学基金项目
APOBEC3A驱动膀胱癌发生发展的动物模型及其机制研究
- 批准号:82303057
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
Effects of tACS on alcohol-induced cognitive and neurochemical deficits
tACS 对酒精引起的认知和神经化学缺陷的影响
- 批准号:
10825849 - 财政年份:2024
- 资助金额:
$ 35.77万 - 项目类别:
Impact of tissue resident memory T cells on the neuro-immune pathophysiology of anterior eye disease
组织驻留记忆 T 细胞对前眼疾病神经免疫病理生理学的影响
- 批准号:
10556857 - 财政年份:2023
- 资助金额:
$ 35.77万 - 项目类别:
Endothelial Cell Reprogramming in Familial Intracranial Aneurysm
家族性颅内动脉瘤的内皮细胞重编程
- 批准号:
10595404 - 财政年份:2023
- 资助金额:
$ 35.77万 - 项目类别:
Dravet Syndrome Anti-Epileptic Control by Targeting GIRK Channels
通过针对 GIRK 通道进行 Dravet 综合征抗癫痫控制
- 批准号:
10638439 - 财政年份:2023
- 资助金额:
$ 35.77万 - 项目类别: