Development of a program to assess and treat distress in glaucoma patients using an automated EHR-derived AI algorithm
使用自动 EHR 衍生的 AI 算法开发一个程序来评估和治疗青光眼患者的痛苦
基本信息
- 批准号:10469533
- 负责人:
- 金额:$ 11.47万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsAnxietyArtificial IntelligenceAutomationAwardBehavior TherapyBehavioral SciencesBioinformaticsBiometryBlindnessCalibrationCaringCharacteristicsChronicClinicClinicalClinical DataClinical ResearchComprehensionCoping SkillsDataData CollectionData ScienceData SetDatabase Management SystemsDatabasesDevelopmentDiscriminationDiseaseDistressEffectivenessElectronic Health RecordEnsureFamiliarityFocus GroupsGlaucomaGoalsGoldHealthHealth Care ResearchHealth ProfessionalHealth SciencesHealthcareImageInterventionLaboratoriesLeadLeftLightMeasuresMedicalMedical ResearchMental DepressionMentorsNatureOncologyOphthalmologistOutcomeOutcome MeasurePatient CarePatient Outcomes AssessmentsPatient Self-ReportPatientsPerformancePersonal SatisfactionPhasePopulationPropertyProtocols documentationProviderPsychiatryQuality of lifeQuestionnairesRandomizedRandomized Clinical TrialsRecommendationRecordsRegistriesResearchResearch DesignResearch PersonnelRisk EstimateRisk FactorsSeverity of illnessStress and CopingSupervisionSurveysTechniquesTelephoneTestingTimeTrainingValidationVisionVisitVisual FieldsWorkalgorithm trainingartificial intelligence algorithmbasecareer developmentclinical careclinical decision-makingclinical practiceclinical riskcomorbiditycompliance behaviorcostdesigndiagnosis standardevidence baseexperienceeye centerfollow-uphigh riskimprovedinnovationinstrumentintervention programmedication compliancemindfulness-based stress reductionmodel developmentmultidisciplinarynovel strategiesoutcome predictionpatient screeningpopulation healthpredictive modelingpreventprogramsprospectivepsychosocialretention ratescreeningscreening programskillsstandard measurestatistical and machine learning
项目摘要
PROJECT SUMMARY/ABSTRACT
Glaucoma is a disease that results in irreversible blindness and due to its chronic, progressive nature, imposes
a psychosocial burden on patients. Appropriately, the focus of ophthalmologists is on controlling the disease to
prevent vision loss. Yet, patient’s psychosocial distress during and after therapy has not been routinely
addressed and is another important target of care. Psychosocial distress (i.e., anxiety, depression) negatively
impacts all outcomes in glaucoma and is associated with poor follow-up and medication adherence, worse
vision-related quality-of-life and disease severity, and faster rates of visual field progression. Direct
assessment and treatment of psychosocial distress is likely to improve glaucoma outcomes. While uncommon
in glaucoma clinics, psychosocial distress screening has been occurring with some consistency in other
medical settings (e.g., oncology) for more than a decade, leading to referrals for intervention and
improvements in psychosocial distress and subsequently overall health. Our overarching scientific premise is
that a screening program for psychosocial distress (i.e., anxiety, depression) in glaucoma clinics would
enhance the patient’s adherence to medical recommendations, and quality-of-life, ultimately leading to
improvements in vision-related outcomes (e.g., visual field progression). Patient-reported outcome measures
are the gold standard measures of distress, however are not routinely collected in patients with glaucoma due
to perceived time and cost burdens. To remedy this, the PI proposes an automated pre-screening framework,
motivated by preliminary analyses that demonstrate that distress can be reliably identified using predictive
modeling based on glaucoma clinical risk factors from electronic health records (EHR) data. This predictive
model will be developed in aim 1 using an existing EHR database, the Duke Glaucoma Registry, and will yield
automated risk estimates of distress that can be used to inform clinical decision making, regarding the
administration of a distress survey; therefore, limiting distress assessment to a subset of high-risk patients.
Secondary aims will focus on external validation of the automated technique, and gauging acceptability to
distress screening in a glaucoma clinic (aim 2), and the refinement of a behavioral intervention to improve
coping skills for distress in patients with glaucoma (aim 3). This research will positively impact patient well-
being in glaucoma, serving as an evidence-based assessment of a distress screening program. The proposal
also details a training plan to help the PI transition from a postdoctoral scholar to an independent researcher.
The mentored phase of the award will be supervised by the primary mentor, Dr. Felipe Medeiros, and
multidisciplinary mentoring team including Dr. Tamara Somers (Psychiatry and Behavioral Sciences), Dr.
David Page (Biostatistics & Bioinformatics), and Dr. Kevin Weinfurt (Population Health Sciences). Performing
the proposed research, formal coursework, and mentored career development will provide the PI with highly
sought-after skills and experiences to help ensure a successful transition to independence.
项目总结/文摘
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Samuel Isaac Berchuck其他文献
Samuel Isaac Berchuck的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Samuel Isaac Berchuck', 18)}}的其他基金
Development of a program to assess and treat distress in glaucoma patients using an automated EHR-derived AI algorithm
使用自动 EHR 衍生的 AI 算法开发一个程序来评估和治疗青光眼患者的痛苦
- 批准号:
10282287 - 财政年份:2021
- 资助金额:
$ 11.47万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 11.47万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 11.47万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 11.47万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 11.47万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 11.47万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 11.47万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 11.47万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 11.47万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 11.47万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 11.47万 - 项目类别:
Continuing Grant