Tumor suppressor vulnerability conferred by aneuploid loss of haploinsufficient metallothionein genes

单倍体金属硫蛋白基因的非整倍体缺失导致肿瘤抑制脆弱性

基本信息

  • 批准号:
    10469891
  • 负责人:
  • 金额:
    $ 135.9万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-01 至 2025-08-31
  • 项目状态:
    未结题

项目摘要

Abstract Cancer will rarely be cured through pharmacologic targeting of single genes. Tumors evolve in response to selection pressure. Precision oncology often targets a single gene product, and that gene simply becomes mutated once the drug is administered. Although individual genes may mutate, tumor biology is nonetheless constrained to dysregulating specific pathways for each cancer type. We have previously created cutting-edge bioinformatic tools to better understand which constrained pathways are acting as tumor suppressors and oncogenes, due to collaborative gene dysregulation at the molecular pathway level. Aneuploidy is a major cause of molecular pathway changes in cancer and unfortunately each aneuploid event alters both predicted driver genes and unknown passenger genes. Investigation of causal aneuploid changes in a tumor remains difficult, if not impossible, to study with current cell biology and genetic tools. However, we have discovered a unique, commonly suppressed (70% of high-grade serous ovarian cancers have a monoallelic loss, correlating with average reduced expression), pathway which is amenable to well-controlled basic science experimentation: the cadmium response pathway. It is composed of 11 highly homologous metallothionein genes arrayed on a single chromosomal locus. Metallothioneins sequester the bulk of intracellular Zn2+ and environmental genotoxic Cd2+ ions. The loss of the metallothionein locus is associated with chromosome instability and occurs early in tumor formation. Our in vitro assays show controlled metallothionein suppression results in elevated DNA damage. However, the role of metallothioneins as tumor suppressors and as regulators of cancer cellular and molecular biology is largely unknown. This project will establish specific tumor suppressor phenotypes of metallothioneins in ovarian cancer and determine if this aneuploid pathway will serve as a representative example of how multi- genic vulnerabilities can better enable next-generation cancer therapies. We will (1) characterize in vivo the effects of metallothionein gene loss in spontaneous tumor formation in ovarian cancer, (2) develop controlled models of gene suppression enabling suppression of all 11 genes, including by a synthetic dead-Cas9-based transcription factor, (3) determine which cadmium-dependent and cadmium-independent metallothionein- regulated molecular pathways convey tumor suppressor functions, and (4) discover drug classes which best selectively kill low-metallothionein cells. Genetic tools created by this project will enable causal investigation of entire molecular pathways for future projects. Taken together, this innovative research program will directly test how an uncharacterized aneuploid-suppressed pathway contributes to oncogenesis and remains a pharmacologically targetable vulnerability throughout tumor development.
摘要 癌症很少通过单基因药物靶向治疗。肿瘤的进化是对 选择压力精确肿瘤学通常针对单个基因产物,而该基因只是成为 会发生变异虽然个别基因可能会发生突变,但肿瘤生物学仍然是 限制于每种癌症类型的特定通路失调。我们之前已经创造了尖端的 生物信息学工具,以更好地了解哪些受约束的途径作为肿瘤抑制因子, 癌基因,由于在分子途径水平的协同基因失调。非整倍体是导致 不幸的是,每一次非整倍体事件都改变了预测的驱动因素, 基因和未知乘客基因。肿瘤中非整倍体变化的原因研究仍然很困难,如果 用目前的细胞生物学和遗传学工具来研究并非不可能。不过,我们发现了一种独特的, 通常被抑制(70%的高级别浆液性卵巢癌有单等位基因丢失,与 平均减少的表达),这是服从良好控制的基础科学实验的途径: 镉反应途径它由11个高度同源的金属硫蛋白基因排列在一个单一的 染色体位点金属硫蛋白螯合大量的细胞内Zn 2+和环境遗传毒性Cd 2 + 离子。金属硫蛋白基因座的缺失与染色体不稳定性有关,并发生在肿瘤的早期 阵我们的体外试验表明,受控的金属硫蛋白抑制导致DNA损伤升高。 然而,金属硫蛋白作为肿瘤抑制因子和作为癌症细胞和分子调节因子的作用还不清楚。 生物学基本上是未知的。本项目将建立金属硫蛋白的特异性肿瘤抑制表型 并确定这种非整倍体途径是否将作为多倍体途径的代表性例子, 基因脆弱性可以更好地实现下一代癌症疗法。我们将(1)在体内表征 金属硫蛋白基因缺失在卵巢癌自发性肿瘤形成中的作用,(2)发展控制 基因抑制模型能够抑制所有11个基因,包括通过基于合成的dead Cas9 转录因子,(3)确定哪种镉依赖性和镉非依赖性金属硫蛋白- 受调节的分子途径传递肿瘤抑制功能,以及(4)发现最佳的药物类别, 选择性杀死低金属硫蛋白细胞。该项目创建的遗传工具将使因果调查成为可能。 为未来的项目提供完整的分子途径。综合来看,这项创新的研究计划将直接测试 非整倍体抑制途径如何促进肿瘤发生, 在整个肿瘤发展过程中的可靶向脆弱性。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Joe R Delaney其他文献

Joe R Delaney的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Joe R Delaney', 18)}}的其他基金

Combination Of Autophagy Selective Therapeutics (COAST) in Serous Ovarian Cancer
自噬选择性治疗 (COAST) 组合治疗浆液性卵巢癌
  • 批准号:
    10530691
  • 财政年份:
    2021
  • 资助金额:
    $ 135.9万
  • 项目类别:
Combination Of Autophagy Selective Therapeutics (COAST) in Serous Ovarian Cancer
自噬选择性治疗 (COAST) 组合治疗浆液性卵巢癌
  • 批准号:
    10357996
  • 财政年份:
    2021
  • 资助金额:
    $ 135.9万
  • 项目类别:
Copy Number Alterations in Low Mutation Cancer
低突变癌症中的拷贝数改变
  • 批准号:
    9814814
  • 财政年份:
    2018
  • 资助金额:
    $ 135.9万
  • 项目类别:
Copy Number Alterations in Low Mutation Cancer
低突变癌症中的拷贝数改变
  • 批准号:
    10054186
  • 财政年份:
    2018
  • 资助金额:
    $ 135.9万
  • 项目类别:
Copy Number Alterations in Low Mutation Cancer
低突变癌症中的拷贝数改变
  • 批准号:
    9314982
  • 财政年份:
    2017
  • 资助金额:
    $ 135.9万
  • 项目类别:

相似海外基金

Elucidating the effects of extra chromosome elimination in mosaic aneuploidy syndromes: Pallister-Killian syndrome as a model
阐明额外染色体消除对嵌合非整倍体综合征的影响:以 Pallister-Killian 综合征为模型
  • 批准号:
    10887038
  • 财政年份:
    2023
  • 资助金额:
    $ 135.9万
  • 项目类别:
Characterization of aneuploidy, cell fate and mosaicism in early development
早期发育中非整倍性、细胞命运和嵌合体的表征
  • 批准号:
    10877239
  • 财政年份:
    2023
  • 资助金额:
    $ 135.9万
  • 项目类别:
The impact of aneuploidy on early human development
非整倍体对人类早期发育的影响
  • 批准号:
    MR/X007979/1
  • 财政年份:
    2023
  • 资助金额:
    $ 135.9万
  • 项目类别:
    Research Grant
Cell competition, aneuploidy, and aging
细胞竞争、非整倍性和衰老
  • 批准号:
    10648670
  • 财政年份:
    2023
  • 资助金额:
    $ 135.9万
  • 项目类别:
Understanding how aneuploidy disrupts quiescence in the model eukaryote Saccharomyces cerevisiae
了解非整倍体如何破坏模型真核生物酿酒酵母的静止状态
  • 批准号:
    10735074
  • 财政年份:
    2023
  • 资助金额:
    $ 135.9万
  • 项目类别:
Preventing Age-Associated Oocyte Aneuploidy: Mechanisms Behind the Drosophila melanogaster Centromere Effect
预防与年龄相关的卵母细胞非整倍性:果蝇着丝粒效应背后的机制
  • 批准号:
    10538074
  • 财政年份:
    2022
  • 资助金额:
    $ 135.9万
  • 项目类别:
Functional evaluation of kinesin gene variants associated with female subfertility and egg aneuploidy.
与女性生育力低下和卵子非整倍性相关的驱动蛋白基因变异的功能评估。
  • 批准号:
    10537275
  • 财政年份:
    2022
  • 资助金额:
    $ 135.9万
  • 项目类别:
Using CRISPR screening to uncover aneuploidy-specific genetic dependencies
使用 CRISPR 筛选揭示非整倍体特异性遗传依赖性
  • 批准号:
    10661533
  • 财政年份:
    2022
  • 资助金额:
    $ 135.9万
  • 项目类别:
Comparative Analysis of Aneuploidy and Cellular Fragmentation Dynamics in Mammalian Embryos
哺乳动物胚胎非整倍性和细胞破碎动力学的比较分析
  • 批准号:
    10366610
  • 财政年份:
    2022
  • 资助金额:
    $ 135.9万
  • 项目类别:
FASEB SRC: The Consequences of Aneuploidy: Honoring the Contributions of Angelika Amon
FASEB SRC:非整倍体的后果:纪念 Angelika Amon 的贡献
  • 批准号:
    10467260
  • 财政年份:
    2022
  • 资助金额:
    $ 135.9万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了