Humanized mouse models for arsenic toxicology
砷毒理学的人源化小鼠模型
基本信息
- 批准号:10470377
- 负责人:
- 金额:$ 41.82万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-17 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:Adrenal GlandsAdrenal hormone preparationAdverse effectsAffectAnimal ModelArsenicBeta CellCarcinogensCardiovascular DiseasesComplexDevelopmentDiabetes MellitusDiseaseDrug Metabolic DetoxicationEnvironmental ExposureEnzymesExcretory functionExposure toFemaleFoodFunctional disorderGenesGenetic PolymorphismGlucocorticoidsGlucoseGoalsHaplotypesHormonesHumanHyperglycemiaHypothalamic structureImpairmentInsulin ResistanceLaboratoriesLaboratory AnimalsLaboratory ResearchLaboratory StudyLaboratory miceLinkLiverMalignant NeoplasmsMammalsMetabolismMethylationMethyltransferaseModelingMolecularMouse StrainsMusObesityOrthologous GenePatternPhenotypePituitary GlandPopulationPopulation StudyPredispositionProductionPublic HealthRegulator GenesReportingResearchRespiratory DiseaseRiskRoleSignal TransductionStress TestsTissuesToxicologyUrineWild Type Mousebasebehavior testbiological adaptation to stresscancer riskcohortcontaminated drinking waterdesigndiabeticdiabetogenicdisorder riskdrinking waterhuman tissuehumanized mousehypothalamic-pituitary-adrenal axisimpaired capacityimprovedinsulin tolerancemalemetabolic phenotypemouse modelnervous system disordernovelpublic health relevancetoxicant
项目摘要
PROJECT SUMMARY
Contamination of drinking water and foods with inorganic arsenic (iAs) represents a major public health risk in
the U.S. and worldwide. Exposure to iAs has been linked to cancer, diabetes, cardiovascular, respiratory and
neurological diseases.
Humans and most other mammalian species have developed mechanism for detoxification of iAs, which involves
a two-step conversion of iAs to methyl-As (MAs) and dimethyl-As (DMAs) and excretion of the methylated
metabolites in urine. In mammals, iAs methylation is catalyzed by orthologs of a single enzyme, arsenic
methyltransferase (AS3MT). An impaired capacity to methylate iAs, e.g., due to AS3MT polymorphism, has
been linked to increased risk of diseases associated with iAs exposure.
Mechanisms underlying the adverse effects of iAs exposure have been extensively studied using laboratory
models. However, laboratory research has been hindered by substantial differences between laboratory animals
and humans in their capacity to metabolize iAs. In particular, laboratory mice have been shown to methylate
and detoxify iAs much more efficiently than humans, making it difficult to reproduce in mice some of the adverse
phenotypes reported in population studies, specifically cancer and diabetes. The ultimate goal of the proposed
research is to develop novel mouse models, in which iAs metabolism resembles that in humans and in which
iAs-associated diseases can be studied at environmentally relevant iAs exposure levels.
We have recently generated a new mouse strain in which the Borcs7/As3mt locus was humanized by syntenic
replacement. AS3MT expression in tissues of the humanized (Hs/Hs) mice resembles that in human tissues
and differs from expression of mouse As3mt: AS3MT expression is lower in livers and much higher in adrenals.
Notably, the different pattern of AS3MT expression in tissues of Hs/Hs mice is associated with low efficiency of
iAs detoxification and with the profiles for iAs and its methylated metabolites in tissues and excreta that are
consistent with those reported in humans.
The goals of this project are: (1) To characterize susceptibility of Hs/Hs mice to adverse effects of iAs exposure,
focusing on the diabetogenic effects, (2) to generate a new mouse strain expressing AS3MT haplotype that has
been linked to impaired iAs methylation and risk of iAs-induced diseases in human cohorts, and (3) to explore
association between AS3MT expression in adrenals and adrenal function.
The proposed research will generate and validate unique mouse models for iAs toxicology. These models will
make it possible to study adverse effects of iAs at environmentally relevant exposure levels and in context with
human-like metabolism of iAs and AS3MT polymorphism. Using these models will markedly improve
translatability and impact of laboratory studies focusing on iAs induced diseases.
项目总结
饮用水和食品被无机砷污染(IAS)是#年的主要公共健康风险。
美国和世界各地。暴露于IAS与癌症、糖尿病、心血管、呼吸系统和
神经系统疾病。
人类和大多数其他哺乳动物物种已经形成了IAS的解毒机制,这涉及到
IAS向甲基AS(MAS)和二甲基AS(DMAS)的两步转化和甲基化产物的排泄
尿液中的代谢物。在哺乳动物中,IAS甲基化是由单一酶砷的同源酶催化的
甲基转移酶(AS3MT)。甲基化IAS的能力受损,例如,由于AS3MT多态,有
与暴露于IAS相关的疾病风险增加有关。
暴露于ias的不良影响的潜在机制已在实验室中进行了广泛研究。
模特们。然而,由于实验动物之间的巨大差异,实验室研究一直受到阻碍。
以及人类代谢IAS的能力。特别是,实验室小鼠已被证明甲基化。
与人类相比,IAS的解毒效率要高得多,这使得它很难在老鼠身上复制一些不利的
人群研究中报告的表型,特别是癌症和糖尿病。建议的最终目标是
研究目的是开发新的小鼠模型,在这种模型中,ias的代谢与人类相似,而且
与IAS相关的疾病可以在与环境有关的IAS暴露水平上进行研究。
我们最近创造了一种新的小鼠品系,其中Borcs7/AS3MT基因座被Syntenic人源化
替补。AS3MT在人源化(HS/HS)小鼠组织中的表达与人类组织中的表达相似
与小鼠AS3MT的表达不同:AS3MT在肝脏中的表达较低,在肾上腺中的表达较高。
值得注意的是,在HS/HS小鼠组织中AS3MT表达的不同模式与低效率相关
IAS解毒和IAS及其甲基化代谢物在组织和排泄物中的分布
与在人类身上报道的一致。
该项目的目标是:(1)表征HS/HS小鼠对IAS暴露不良影响的敏感性,
着眼于糖尿病的作用,(2)产生一种新的表达AS3MT单倍型的小鼠品系,该单倍型具有
在人类队列中与IAS甲基化受损和IAS诱发疾病的风险有关,以及(3)探索
肾上腺AS3MT表达与肾上腺功能的关系
这项拟议的研究将产生并验证IAS毒理学的独特小鼠模型。这些型号将
使在与环境有关的暴露水平和在以下情况下研究IAS的不利影响成为可能
IAS和AS3MT基因的类人化代谢。使用这些模型将显著改善
侧重于IAS引起的疾病的实验室研究的可译性和影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Beverly H Koller其他文献
The hippocratic finger points the blame at PGE2
希波克拉底的手指指向 PGE2 应受责备。
- DOI:
10.1038/ng0608-691 - 发表时间:
2008-06-01 - 期刊:
- 影响因子:29.000
- 作者:
Kenneth G Coggins;Thomas M Coffman;Beverly H Koller - 通讯作者:
Beverly H Koller
Beverly H Koller的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Beverly H Koller', 18)}}的其他基金
Role and Mitigation of Inflammasomes and Inflammation During COVID-19
COVID-19 期间炎症小体和炎症的作用和缓解
- 批准号:
10521963 - 财政年份:2022
- 资助金额:
$ 41.82万 - 项目类别:
Modeling the contribution of coronavirus cellular tropism to viral pathogenesis
模拟冠状病毒细胞向性对病毒发病机制的贡献
- 批准号:
10583101 - 财政年份:2022
- 资助金额:
$ 41.82万 - 项目类别:
Role and Mitigation of Inflammasomes and Inflammation During COVID-19
COVID-19 期间炎症小体和炎症的作用和缓解
- 批准号:
10666572 - 财政年份:2022
- 资助金额:
$ 41.82万 - 项目类别:
Role and Mitigation of Inflammasomes and Inflammation During COVID-19
COVID-19 期间炎症小体和炎症的作用和缓解
- 批准号:
10470451 - 财政年份:2021
- 资助金额:
$ 41.82万 - 项目类别:
Mouse models for study of the NLRP1 and CARD8 inflammasomes
用于研究 NLRP1 和 CARD8 炎性体的小鼠模型
- 批准号:
10354472 - 财政年份:2021
- 资助金额:
$ 41.82万 - 项目类别:
Mouse models for study of the NLRP1 and CARD8 inflammasomes
用于研究 NLRP1 和 CARD8 炎性体的小鼠模型
- 批准号:
10493370 - 财政年份:2021
- 资助金额:
$ 41.82万 - 项目类别:
Genetically humanized mice for modeling human Fc-receptor interaction during influenza infection
用于模拟流感感染期间人类 Fc 受体相互作用的基因人源化小鼠
- 批准号:
10117188 - 财政年份:2020
- 资助金额:
$ 41.82万 - 项目类别:
Assembly of disease-relevant pathways in the mouse
小鼠疾病相关通路的组装
- 批准号:
8638644 - 财政年份:2014
- 资助金额:
$ 41.82万 - 项目类别:














{{item.name}}会员




