Causal Representation Learning for the Spatial Analysis of Transcriptomic and Imaging Data in Tissue Contexts
用于组织环境中转录组和成像数据空间分析的因果表示学习
基本信息
- 批准号:10471669
- 负责人:
- 金额:$ 137.88万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-15 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:Alzheimer&aposs DiseaseArchitectureAreaAwardBiologicalCell CommunicationCellsComplementComputing MethodologiesDataData AnalysesData ReportingData SetDepositionDevelopmentDiseaseDivorceEtiologyExplosionFibrosisGenomicsHodgkin DiseaseHomeostasisImageImmunologicsInflammationLearningMachine LearningMethodsModalityPatientsProcessStructureSystemTestingTimeTissuesTumor-infiltrating immune cellsUnited States National Institutes of Healthcomputer frameworkinnovationmachine learning frameworknew therapeutic targetnovel therapeuticsprotein aggregationrecruitsingle cell analysistranscriptomics
项目摘要
NIH New Innovators Award
Abstract
By melding imaging and genomics it is now possible to obtain spatially resolved transcriptomic
datasets; however, computational methods for analyzing such datasets have lagged behind
experimental developments. To realize the full potential of spatial transcriptomic (ST) data, we
cannot rely on the methods that have been developed for analyzing single cell data that divorce
cells from their microenvironment. As with experimental developments that saw ST
breakthroughs by melding imaging and sequencing, we argue that the same will hold true in the
computational domain, and, therefore, propose a framework for the analysis of this data that
integrates imaging and sequencing with causality to infer regulatory mechanisms underlying
spatially driven processes.
We propose to achieve this through an innovative unification of two vibrant areas in machine
learning (ML); representation learning and causal inference. This is a momentous task since
representation learning, although successful in predictive tasks like recommender systems,
does not generally elucidate causal relationships. To overcome this, we will use representation
learning to identify correlations that are present in all data modalities available in ST, and
thereby discern spurious correlations from causal ones using the principle of invariance. In
addition, we will build on three fundamental concepts in ML:
- Image inpainting: to identify motifs in tissue architecture as well as anomalous tissue patches
- Optimal transport: to infer tissue lineages from snapshots in time
- Causal structure discovery: to identify regulatory modules & predict the effect of perturbations
This unification will result in an ML framework that integrates space, time, and expression to
identify biological mechanisms underlying spatial processes. Although this framework will be
broadly applicable, it is centered on three disease contexts, which will serve as the foreground
to test and refine our methods and for which ST data have already been obtained:
- Inflammation/fibrosis in the gut; to study cell recruitment, matrix deposition, and clearance;
- Alzheimer's disease; to study questions of secretion and protein aggregation; and
- Classic Hodgkin lymphoma; to study tumor-immune cell interactions & immunological invasion.
Understanding the regulatory mechanisms of cell-cell communication in these disease contexts
has the potential to give rise to new therapeutic targets that could be validated in partnership
with our experimental collaborators and benefit patients' lives.
美国国立卫生研究院新创新者奖
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Building a two-way street between cell biology and machine learning.
在细胞生物学和机器学习之间建立一条双向街道。
- DOI:10.1038/s41556-023-01279-6
- 发表时间:2024
- 期刊:
- 影响因子:21.3
- 作者:Uhler,Caroline
- 通讯作者:Uhler,Caroline
Lateral confined growth of cells activates Lef1 dependent pathways to regulate cell-state transitions.
- DOI:10.1038/s41598-022-21596-4
- 发表时间:2022-10-15
- 期刊:
- 影响因子:4.6
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Caroline Uhler其他文献
Caroline Uhler的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
新型F-18标记香豆素衍生物PET探针的研制及靶向Alzheimer's Disease 斑块显像研究
- 批准号:81000622
- 批准年份:2010
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
阿尔茨海默病(Alzheimer's disease,AD)动物模型构建的分子机理研究
- 批准号:31060293
- 批准年份:2010
- 资助金额:26.0 万元
- 项目类别:地区科学基金项目
跨膜转运蛋白21(TMP21)对引起阿尔茨海默病(Alzheimer'S Disease)的γ分泌酶的作用研究
- 批准号:30960334
- 批准年份:2009
- 资助金额:22.0 万元
- 项目类别:地区科学基金项目
相似海外基金
Pathophysiological mechanisms of hypoperfusion in mouse models of Alzheimer?s disease and small vessel disease
阿尔茨海默病和小血管疾病小鼠模型低灌注的病理生理机制
- 批准号:
10657993 - 财政年份:2023
- 资助金额:
$ 137.88万 - 项目类别:
Social Connectedness and Communication in Parents with Huntington''s Disease and their Offspring: Associations with Psychological and Disease Progression
患有亨廷顿病的父母及其后代的社会联系和沟通:与心理和疾病进展的关联
- 批准号:
10381163 - 财政年份:2022
- 资助金额:
$ 137.88万 - 项目类别:
The Role of Menopause-Driven DNA Damage and Epigenetic Dysregulation in Alzheimer s Disease
更年期驱动的 DNA 损伤和表观遗传失调在阿尔茨海默病中的作用
- 批准号:
10531959 - 财政年份:2022
- 资助金额:
$ 137.88万 - 项目类别:
The Role of Menopause-Driven DNA Damage and Epigenetic Dysregulation in Alzheimer s Disease
更年期驱动的 DNA 损伤和表观遗传失调在阿尔茨海默病中的作用
- 批准号:
10700991 - 财政年份:2022
- 资助金额:
$ 137.88万 - 项目类别:
Interneurons as early drivers of Huntington´s disease progression
中间神经元是亨廷顿病进展的早期驱动因素
- 批准号:
10518582 - 财政年份:2022
- 资助金额:
$ 137.88万 - 项目类别:
Interneurons as Early Drivers of Huntington´s Disease Progression
中间神经元是亨廷顿病进展的早期驱动因素
- 批准号:
10672973 - 财政年份:2022
- 资助金额:
$ 137.88万 - 项目类别:
Social Connectedness and Communication in Parents with Huntington''s Disease and their Offspring: Associations with Psychological and Disease Progression
患有亨廷顿病的父母及其后代的社会联系和沟通:与心理和疾病进展的关联
- 批准号:
10585925 - 财政年份:2022
- 资助金额:
$ 137.88万 - 项目类别:
Oligodendrocyte heterogeneity in Alzheimer' s disease
阿尔茨海默病中的少突胶质细胞异质性
- 批准号:
10180000 - 财政年份:2021
- 资助金额:
$ 137.88万 - 项目类别:
Serum proteome analysis of Alzheimer´s disease in a population-based longitudinal cohort study - the AGES Reykjavik study
基于人群的纵向队列研究中阿尔茨海默病的血清蛋白质组分析 - AGES 雷克雅未克研究
- 批准号:
10049426 - 财政年份:2021
- 资助金额:
$ 137.88万 - 项目类别:
Repurposing drugs for Alzheimer´s disease using a reverse translational approach
使用逆翻译方法重新利用治疗阿尔茨海默病的药物
- 批准号:
10295809 - 财政年份:2021
- 资助金额:
$ 137.88万 - 项目类别: