Unraveling the genetic basis of cellular behaviors with deep learning and imaging-based reverse genetics
通过深度学习和基于成像的反向遗传学揭示细胞行为的遗传基础
基本信息
- 批准号:10472362
- 负责人:
- 金额:$ 117.36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-08 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:BackBehaviorBiologicalBiological SciencesBiologyCell Culture TechniquesCell LineCell NucleusCell ShapeCellsCloud ComputingClustered Regularly Interspaced Short Palindromic RepeatsCollectionColorCommunitiesComputing MethodologiesDataDiseaseEnsureGene ExpressionGenerationsGeneticGenetic ScreeningGenomicsGoalsImageImage AnalysisImaging technologyImmunohistochemistryLibrariesLinkMeasurementMeasuresMethodsMicroscopeModelingModernizationOrganismPatternRNAResearch PersonnelResolutionStandardizationTissuesVariantVisionWorkbasecell behaviorcellular imagingdeep learningexperimental studyhigh rewardhigh riskimaging platformlarge scale datalearning strategylive cell imagingmoviemultimodalitynew technologynovel strategiespreservationreverse geneticsskillstoolunsupervised learning
项目摘要
Project Summary
Imaging and genomics are becoming increasingly intertwined, as multiplexed RNA FISH and
multiplexed immunohistochemistry now make it possible to perform “omic” measurements while
preserving spatial information. These new technologies are allowing us to create a new,
descriptive understanding of normal and diseased tissues. For cell culture models, they offer the
promise of measuring multiple facets of cellular behavior – ranging from cell shape to gene
expression – all in the same cell. This can be done by pairing dynamic live-cell imaging data
with end-point spatial genomics measurements. Such measurements could even be performed
in the setting of perturbations, creating a powerful tool for mapping biological networks. In this
proposal, I seek to make these methods accessible to the life science community by using
large-scale data annotation, deep learning, and cloud computing to solve several outstanding
cellular image analysis problems facing the spatial genomics field. I also propose to develop a
simple, scalable approach to performing perturbations in imaging-based experiments.
The work proposed here is three-fold. First, we will develop deep learning methods for
performing whole cell segmentation in tissues as well as segmentation and lineage construction
in live-cell imaging movies. To ensure these models generalize across tissues, cell lines, and
imaging platforms we will undertake a large-scale data annotation effort to create a
standardized collection of images that have been annotated with single cell resolution. Second,
we will also develop new deep learning methods for unsupervised learning of cellular behaviors.
Third, we will create a new approach to imaging-based reverse genetic screens. In this
approach, we will use CRISPR-Display to create multi-color spatial patterns in cell nuclei. This
will allow us to link cells and perturbations in images while minimizing the number of collected
images. Libraries with 100’s of thousands of perturbations would be interpretable with only 1-2
rounds of low-magnification 4 color imaging.
Achieving these high-risk, high-reward goals will constitute a transformative advance as it will
empower researchers studying living systems with imaging at the resolution of a single cell with
both ease and scale. Once finished, this work will place the microscope back at the center of the
biologist’s toolkit and enable images to become a universal datatype for biology.
项目摘要
成像和基因组学正变得越来越交织在一起,因为多重RNA FISH和
多重免疫组织化学现在使得进行“组学”测量成为可能,
保存空间信息。这些新技术使我们能够创造一个新的,
对正常和病变组织的描述性理解。对于细胞培养模型,他们提供
测量细胞行为的多个方面的承诺-从细胞形状到基因
表达式-都在同一个单元格中。这可以通过配对动态活细胞成像数据来完成
与终点空间基因组学测量。这样的测量甚至可以
在扰动的情况下,为绘制生物网络图创造了一个强大的工具。在这
我的建议,我试图使这些方法获得生命科学界使用
大规模数据标注、深度学习和云计算解决了几个突出问题,
空间基因组学领域面临的细胞图像分析问题。我还建议制定一项
在基于成像的实验中进行扰动的简单、可扩展的方法。
这里提出的工作有三个方面。首先,我们将开发深度学习方法,
进行组织中的全细胞分割以及分割和谱系构建,
活细胞成像电影。为了确保这些模型在组织、细胞系和
成像平台,我们将进行大规模的数据注释工作,
已用单细胞分辨率注释的标准化图像集合。第二、
我们还将开发新的深度学习方法,用于细胞行为的无监督学习。
第三,我们将创建一种基于成像的反向基因筛选的新方法。在这
我们将使用CRISPR-Display在细胞核中创建多色空间模式。这
将使我们能够将图像中的细胞和扰动联系起来,同时最大限度地减少收集的细胞数量。
图像.具有成百上千个扰动的库将仅用1-2个就可解释
几轮低倍四色成像
实现这些高风险,高回报的目标将构成一个变革性的进步,因为它将
使研究人员能够以单细胞的分辨率研究生命系统,
既方便又有规模。一旦完成,这项工作将把显微镜放回中心,
生物学家的工具包,使图像成为生物学的通用数据类型。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David A VAN VALEN其他文献
David A VAN VALEN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David A VAN VALEN', 18)}}的其他基金
Understanding host-virus interactions at the single cell level
了解单细胞水平的宿主-病毒相互作用
- 批准号:
9377495 - 财政年份:2016
- 资助金额:
$ 117.36万 - 项目类别:
相似国自然基金
greenwashing behavior in China:Basedon an integrated view of reconfiguration of environmental authority and decoupling logic
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
相似海外基金
METABOLISM: accelerator Mass SpEctrometry to quanTify nanoplastics and decipher their fAte and Behavior in envirOnmentaL and bIological SysteMs
代谢:加速器质谱法可量化纳米塑料并破译其在环境和生物系统中的命运和行为
- 批准号:
EP/Y002733/1 - 财政年份:2024
- 资助金额:
$ 117.36万 - 项目类别:
Research Grant
REU Site: Ecology, Evolution, and Behavior Field Research at Mountain Lake Biological Station
REU 站点:山湖生物站的生态、进化和行为领域研究
- 批准号:
2349462 - 财政年份:2024
- 资助金额:
$ 117.36万 - 项目类别:
Standard Grant
BRITE Pivot: Growing Biological Methods to Improve Soil Behavior for Infrastructure Protection
BRITE 支点:不断发展生物方法来改善土壤行为以保护基础设施
- 批准号:
2227491 - 财政年份:2023
- 资助金额:
$ 117.36万 - 项目类别:
Standard Grant
Biological Mechanisms of Suicidal Behavior among Sexual Minority Adolescents - Supplement
性少数青少年自杀行为的生物学机制 - 补充
- 批准号:
10823709 - 财政年份:2023
- 资助金额:
$ 117.36万 - 项目类别:
The role of biological interactions in the evolution of animal behavior
生物相互作用在动物行为进化中的作用
- 批准号:
RGPIN-2019-06689 - 财政年份:2022
- 资助金额:
$ 117.36万 - 项目类别:
Discovery Grants Program - Individual
The virtual rodent: a platform to study the artificial and biological control of natural behavior
虚拟啮齿动物:研究自然行为的人工和生物控制的平台
- 批准号:
10540574 - 财政年份:2022
- 资助金额:
$ 117.36万 - 项目类别:
The Virtual Rodent: A Platform to Study the Artificial and Biological Control of Natural Behavior
虚拟啮齿动物:研究自然行为的人工和生物控制的平台
- 批准号:
10633144 - 财政年份:2022
- 资助金额:
$ 117.36万 - 项目类别:
Schooling through Vortex Streets; A Biological and Computational Approach to Understanding Collective Behavior in Wild Fish
通过涡街 (Vortex Street) 上学;
- 批准号:
2102891 - 财政年份:2021
- 资助金额:
$ 117.36万 - 项目类别:
Continuing Grant
The role of biological interactions in the evolution of animal behavior
生物相互作用在动物行为进化中的作用
- 批准号:
RGPIN-2019-06689 - 财政年份:2021
- 资助金额:
$ 117.36万 - 项目类别:
Discovery Grants Program - Individual
REU Site: Biological Basis of Social Behavior
REU 网站:社会行为的生物学基础
- 批准号:
1852338 - 财政年份:2020
- 资助金额:
$ 117.36万 - 项目类别:
Continuing Grant














{{item.name}}会员




