Unraveling the genetic basis of cellular behaviors with deep learning and imaging-based reverse genetics
通过深度学习和基于成像的反向遗传学揭示细胞行为的遗传基础
基本信息
- 批准号:10472362
- 负责人:
- 金额:$ 117.36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-08 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:BackBehaviorBiologicalBiological SciencesBiologyCell Culture TechniquesCell LineCell NucleusCell ShapeCellsCloud ComputingClustered Regularly Interspaced Short Palindromic RepeatsCollectionColorCommunitiesComputing MethodologiesDataDiseaseEnsureGene ExpressionGenerationsGeneticGenetic ScreeningGenomicsGoalsImageImage AnalysisImaging technologyImmunohistochemistryLibrariesLinkMeasurementMeasuresMethodsMicroscopeModelingModernizationOrganismPatternRNAResearch PersonnelResolutionStandardizationTissuesVariantVisionWorkbasecell behaviorcellular imagingdeep learningexperimental studyhigh rewardhigh riskimaging platformlarge scale datalearning strategylive cell imagingmoviemultimodalitynew technologynovel strategiespreservationreverse geneticsskillstoolunsupervised learning
项目摘要
Project Summary
Imaging and genomics are becoming increasingly intertwined, as multiplexed RNA FISH and
multiplexed immunohistochemistry now make it possible to perform “omic” measurements while
preserving spatial information. These new technologies are allowing us to create a new,
descriptive understanding of normal and diseased tissues. For cell culture models, they offer the
promise of measuring multiple facets of cellular behavior – ranging from cell shape to gene
expression – all in the same cell. This can be done by pairing dynamic live-cell imaging data
with end-point spatial genomics measurements. Such measurements could even be performed
in the setting of perturbations, creating a powerful tool for mapping biological networks. In this
proposal, I seek to make these methods accessible to the life science community by using
large-scale data annotation, deep learning, and cloud computing to solve several outstanding
cellular image analysis problems facing the spatial genomics field. I also propose to develop a
simple, scalable approach to performing perturbations in imaging-based experiments.
The work proposed here is three-fold. First, we will develop deep learning methods for
performing whole cell segmentation in tissues as well as segmentation and lineage construction
in live-cell imaging movies. To ensure these models generalize across tissues, cell lines, and
imaging platforms we will undertake a large-scale data annotation effort to create a
standardized collection of images that have been annotated with single cell resolution. Second,
we will also develop new deep learning methods for unsupervised learning of cellular behaviors.
Third, we will create a new approach to imaging-based reverse genetic screens. In this
approach, we will use CRISPR-Display to create multi-color spatial patterns in cell nuclei. This
will allow us to link cells and perturbations in images while minimizing the number of collected
images. Libraries with 100’s of thousands of perturbations would be interpretable with only 1-2
rounds of low-magnification 4 color imaging.
Achieving these high-risk, high-reward goals will constitute a transformative advance as it will
empower researchers studying living systems with imaging at the resolution of a single cell with
both ease and scale. Once finished, this work will place the microscope back at the center of the
biologist’s toolkit and enable images to become a universal datatype for biology.
项目摘要
成像和基因组学越来越相互交织,如多重的RNA鱼和
多路复用的免疫组织化学使得执行“ OMIC”测量是可能的
保留空间信息。这些新技术使我们能够创建一个新的
对正常组织和解剖组织的描述性理解。对于细胞培养模型,它们提供了
测量细胞行为多个方面的承诺 - 从细胞形状到基因
表达 - 全部在同一细胞中。这可以通过配对动态活细胞成像数据来完成
与终点的空间基因组学测量。甚至可以执行此类测量
在扰动的环境中,创建了用于映射生物网络的强大工具。在这个
提案,我试图通过使用来使生活科学界可以访问这些方法
大规模的数据注释,深度学习和云计算,以解决几个出色的
细胞图像分析问题面临空间基因组学场。我还建议开发
在基于成像的实验中执行扰动的简单,可扩展的方法。
这里提出的工作是三倍。首先,我们将为
在组织中进行全细胞分割以及分割和谱系结构
在现场电池成像电影中。确保这些模型跨组织,细胞系和
成像平台我们将进行大规模的数据注释努力,以创建一个
已通过单细胞分辨率注释的标准化图像集合。第二,
我们还将开发新的深度学习方法,用于无监督的细胞行为学习。
第三,我们将创建一种基于成像的反向遗传筛选的新方法。在这个
方法,我们将使用CRISPR-Display在细胞核中创建多色空间模式。这
将允许我们在最小化收集的数量的同时将图像中的单元格和扰动连接起来
图像。具有100千的扰动的图书馆只能以1-2的速度解释
低磁化4彩色成像。
实现这些高风险,高回报的目标将构成变革性的进步
授权研究人员通过成像研究生命系统,并以单个单元的分辨率与
轻松和比例。完成后,这项工作将将显微镜放回
生物学家的工具包并使图像成为生物学的通用数据类型。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David A VAN VALEN其他文献
David A VAN VALEN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David A VAN VALEN', 18)}}的其他基金
Understanding host-virus interactions at the single cell level
了解单细胞水平的宿主-病毒相互作用
- 批准号:
9377495 - 财政年份:2016
- 资助金额:
$ 117.36万 - 项目类别:
相似国自然基金
城市污水厂生物除臭系统生物膜微界面微生物逸散行为及机制
- 批准号:52370026
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于生物油活化的橡胶颗粒-沥青界面行为及体系稳定性研究
- 批准号:52308430
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
混用模式下戊唑醇稻作环境行为归趋对枯草芽孢杆菌生物被膜形成的影响及机制
- 批准号:32372630
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
木质生物质强化反硝化过程中的碳利用程度和副产物累积行为
- 批准号:42367027
- 批准年份:2023
- 资助金额:34 万元
- 项目类别:地区科学基金项目
釉原蛋白丝带状组装体的淀粉样组装行为及其生物学功能特性研究
- 批准号:32301042
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Developing an ultra-high throughput droplet microfluidic workflow for genetic circuit characterization
开发用于遗传电路表征的超高通量液滴微流体工作流程
- 批准号:
10680017 - 财政年份:2023
- 资助金额:
$ 117.36万 - 项目类别:
Identifying the Effects of Race-Related Stressors on Laboratory- Induced Stress and Craving among African Americans with Alcohol Use Disorder
确定种族相关压力源对患有酒精使用障碍的非裔美国人实验室诱发的压力和渴望的影响
- 批准号:
10664454 - 财政年份:2023
- 资助金额:
$ 117.36万 - 项目类别:
Development and validation of a porcine model of spinal cord injury-induced neuropathic pain
脊髓损伤引起的神经性疼痛猪模型的开发和验证
- 批准号:
10805071 - 财政年份:2023
- 资助金额:
$ 117.36万 - 项目类别:
Towards treatment for the complex patient: investigations of low-intensity focused ultrasound.
针对复杂患者的治疗:低强度聚焦超声的研究。
- 批准号:
10775216 - 财政年份:2023
- 资助金额:
$ 117.36万 - 项目类别:
Identifying EEG Markers of Altered Interoceptive Processing in Chronic Pain
识别慢性疼痛中内感受处理改变的脑电图标记
- 批准号:
10606187 - 财政年份:2023
- 资助金额:
$ 117.36万 - 项目类别: