scDECO: A novel statistical framework to identify differential co-expression gene combinations systematically using single-cell RNA sequencing data

scDECO:一种新颖的统计框架,利用单细胞 RNA 测序数据系统地识别差异共表达基因组合

基本信息

  • 批准号:
    10474599
  • 负责人:
  • 金额:
    $ 16.91万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

Project Summary Recent single-cell RNA sequencing (scRNAseq) studies have revealed complex tumor ecosystems characterized by intricate interactions between heterogeneous cell types and diverse transcriptional programs. Differential co-expression (DC) analysis is emerging as a crucial complement to the standard differential expression analysis (DE) for gene profiling data. DC analysis can detect correlation changes between pairs of genes across different modulating conditions. However, most DC analysis approaches are originally designed for use on either microarray or bulk RNAseq data. There is an urgent need to develop advanced DC analytical techniques that are tailored to the characteristics of single-cell data, study design and biological objectives. In Aim 1, we will develop a novel, flexible Bayesian model-based framework named scDECO to improve the accuracy of identifying DC gene combinations using scRNAseq data. Using data generated from various scRNAseq experiment protocols, we will evaluate the proposed scDECO algorithm and perform benchmarking analyses to compare our proposed approaches to current approaches. These analyses will provide a better understanding of the advantages and limitations of these methods. In Aim2, we will implement the scDECO algorithm using scRNAseq datasets from melanoma and prostate circulating tumor cells. By identifying sets of clinically relevant DC gene pairs using single-cell data, the findings can promote understanding of the transcriptional co-regulatory processes in cancer stem-like cells and other cells in the tumor microenvironment. Furthermore, the proposed framework has the potential to improve clinical disease severity prediction by incorporating gene co-expression information into risk score calculation. The predictive performance of the proposed algorithm will be further evaluated using both scRNAseq and bulk RNAseq data. Finally, in Aim3, freely available R/Bioconductor software packages will be distributed. The R/Bioconductor environments are both very commonly used by biomedical researchers. Ultimately, this proposed framework will accelerate studies seeking to understand the differential co-regulatory transcriptional activities in tumors.
项目摘要 最近的单细胞RNA测序(scRNAseq)研究揭示了复杂的肿瘤 以异质细胞类型之间复杂的相互作用为特征的生态系统, 不同的转录程序。差异共表达(DC)分析正在兴起, 基因差异表达分析(DE)的一个重要补充 剖析数据。DC分析可以检测基因对之间的相关性变化, 不同的调制条件。然而,大多数DC分析方法最初是 设计用于微阵列或批量RNA测序数据。迫切需要 开发先进的直流分析技术,适合的特点, 单细胞数据、研究设计和生物学目的。 在目标1中,我们将开发一个新颖、灵活的基于贝叶斯模型的框架 命名为scDECO,以提高使用 scRNAseq数据。使用从各种scRNAseq实验方案产生的数据,我们 将评估所提出的scDECO算法,并进行基准分析, 将我们提出的方法与当前的方法进行比较。这些分析将提供一个 更好地了解这些方法的优点和局限性。 在Aim 2中,我们将使用来自 黑色素瘤和前列腺循环肿瘤细胞。通过识别临床相关的 DC基因对使用单细胞数据,这一发现可以促进对 癌症干细胞样细胞和其他细胞中的转录共调节过程 肿瘤微环境此外,拟议的框架有可能 通过整合基因共表达改进临床疾病严重性预测 信息纳入风险评分计算。预测性能的建议 将使用scRNAseq和批量RNAseq数据进一步评估算法。最后, 在目标3中,将分发免费提供的R/Bioconductor软件包。的 R/Bioconductor环境都是生物医学研究人员非常常用的环境。 最终,这一拟议的框架将加速寻求了解 肿瘤中的差异共调节转录活性。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Modeling dynamic correlation in zero-inflated bivariate count data with applications to single-cell RNA sequencing data.
  • DOI:
    10.1111/biom.13457
  • 发表时间:
    2022-06
  • 期刊:
  • 影响因子:
    1.9
  • 作者:
    Yang Z;Ho YY
  • 通讯作者:
    Ho YY
Flexible copula model for integrating correlated multi-omics data from single-cell experiments.
  • DOI:
    10.1111/biom.13701
  • 发表时间:
    2023-06
  • 期刊:
  • 影响因子:
    1.9
  • 作者:
    Ma, Zichen;Davis, Shannon W.;Ho, Yen-Yi
  • 通讯作者:
    Ho, Yen-Yi
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yen-Yi Ho其他文献

Yen-Yi Ho的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yen-Yi Ho', 18)}}的其他基金

scDECO: A novel statistical framework to identify differential co-expression gene combinations systematically using single-cell RNA sequencing data
scDECO:一种新颖的统计框架,利用单细胞 RNA 测序数据系统地识别差异共表达基因组合
  • 批准号:
    10305324
  • 财政年份:
    2021
  • 资助金额:
    $ 16.91万
  • 项目类别:

相似海外基金

CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 16.91万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 16.91万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 16.91万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 16.91万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 16.91万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 16.91万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 16.91万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 16.91万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 16.91万
  • 项目类别:
    Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 16.91万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了