The planning of new compositional action sequences guided by interpretation of ambiguous sensory data in a novel drawing task
在新颖的绘画任务中通过解释模糊的感官数据来规划新的构图动作序列
基本信息
- 批准号:10475124
- 负责人:
- 金额:$ 7.48万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-16 至 2023-09-15
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsAnatomyAnimalsAreaBehaviorBehavioralBehavioral MechanismsBehavioral ModelBehavioral ParadigmBirdsBrainBrain DiseasesClinical PsychologyCognition DisordersCognitiveCognitive ScienceComplexDataDiseaseElectrophysiology (science)ExhibitsFoundationsGoalsHumanImpairmentJointsKnowledgeLanguageLeadLearningLibrariesLinkLiteratureLocationMacacaMapsMediatingMental ProcessesModelingMotorMotor CortexNeurosciencesOutcomePrimatesProceduresProcessPsyche structureRattusResearchSensorySiteStrokeStructureSystemTestingVisualVocabularybasecognitive capacitycognitive functionelectrical microstimulationflexibilityfrontal lobehigh dimensionalityimpaired capacityinnovationinsightmarkov modelmicrostimulationmotor behaviormotor controlneuromechanismnovelnovel strategiesprogramsrelating to nervous systemspatiotemporaltooltouchscreen
项目摘要
PROJECT SUMMARY/ABSTRACT
Animals exhibit a remarkable array of creative, adaptive, and flexible behaviors. Birds and primates repurpose
new materials to build nests and tools; rats efficiently construct navigational shortcuts, and humans generalize
knowledge of one language to efficiently speak another. This ability to dynamically create novel behavior “in a
single trial” depends on compositional planning, or mental processes that generate strategies by recombining
previously learned behavioral components. Crucially, this depends on interpreting ambiguous problems (and
associated sensory data) using prior knowledge. There is a dearth of experimental frameworks for studying
compositional planning. To address this critical need for new approaches, this proposal will elucidate neural
mechanisms in a novel drawing task that I have developed in the Freiwald lab, in which macaques draw copies
of never-before-seen visual figures. In contrast to prior studies of action sequences that are memorized or
externally guided, in this task drawings must be internally generated and depend on cognitive interpretation of
ambiguous sensory data. I will test two central hypotheses: (1) that behavior depends on compositional
planning, based on prior knowledge of actions and sequencing rules, and (2) that frontal cortical activity flexibly
recombines a “library” of trajectories of neural activity corresponding to actions and rules. The first aim will test
the working hypothesis that behavior depends on compositional planning of behavioral programs, or
procedures built from a learned vocabulary of actions (i.e., like strokes for “line” or “arc”) and abstract
sequencing rules (i.e., higher-order procedures, like “repeat”, “connect”). I will apply unsupervised model-fitting
tools to touchscreen and video behavioral data and formally compare alternative models. The second aim is
to identify the dynamic neural representations underlying complex drawings by recording large-scale neural
activity in frontal cortex. I will test the working hypothesis that novel drawings are represented as combinations
of a library of neural activity trajectories encoding actions and sequencing rules. The third aim is to use micro-
stimulation to test the working hypothesis that the causal contribution of neural activity towards planning is
temporally and anatomically specific in a manner that maps onto the latent structure of behavior. I predict that
perturbation of neural trajectories at specific spatio-temporal locations will lead to specific, structured,
behavioral perturbations. The expected outcome is an algorithmic account of how neural activity underlies the
planning of novel complex actions guided by interpretation of ambiguous sensory data. This is significant
because it leads to better understanding of how the brain deploys structured prior knowledge in creative
reasoning and behavior. This research is innovative because it introduces a new behavioral paradigm
focusing on internally-generated, goal-directed sequences, and integrates concepts and tools from cognitive
science with large-scale electrophysiology. This will push the boundaries of our mechanistic understanding of
reasoning that is based on internal manipulation of programs and symbolic knowledge.
项目概要/摘要
动物表现出一系列非凡的创造性、适应性和灵活的行为。鸟类和灵长类动物改变用途
建造巢穴和工具的新材料;老鼠有效地构建了导航捷径,而人类则进行了概括
掌握一种语言才能有效地说另一种语言。这种动态创造新颖行为的能力“在
单一试验”取决于构图规划,或通过重组产生策略的心理过程
以前学过的行为成分。至关重要的是,这取决于对模糊问题的解释(以及
相关的感官数据)使用先验知识。缺乏研究的实验框架
构图规划。为了满足对新方法的迫切需求,该提案将阐明神经网络
我在 Freiwald 实验室开发的一项新颖的绘图任务中的机制,其中猕猴绘制副本
前所未见的视觉人物。与之前对记忆或动作序列的研究相比,
在外部指导下,在此任务中,绘图必须在内部生成,并依赖于认知解释
模糊的感官数据。我将测试两个中心假设:(1)行为取决于组合
基于行动和排序规则的先验知识进行规划,以及(2)额叶皮层活动灵活
重新组合与动作和规则相对应的神经活动轨迹“库”。第一个目标将测试
行为取决于行为程序的组合规划的工作假设,或者
根据学到的动作词汇(即“线”或“弧”的笔画)和抽象构建的程序
排序规则(即高阶过程,如“重复”、“连接”)。我将应用无监督模型拟合
用于触摸屏和视频行为数据并正式比较替代模型的工具。第二个目标是
通过记录大规模神经网络来识别复杂绘图背后的动态神经表征
额叶皮层的活动。我将测试新颖的图画以组合形式表示的工作假设
编码动作和排序规则的神经活动轨迹库。第三个目标是利用微
刺激来测试工作假设,即神经活动对计划的因果贡献是
以映射到行为的潜在结构的方式在时间和解剖上具有特定性。我预测
特定时空位置的神经轨迹的扰动将导致特定的、结构化的、
行为干扰。预期结果是对神经活动如何构成基础的算法解释
通过解释模糊的感官数据来规划新颖的复杂动作。这意义重大
因为它可以让我们更好地理解大脑如何在创造性中部署结构化的先验知识
推理和行为。这项研究具有创新性,因为它引入了一种新的行为范式
专注于内部生成的、目标导向的序列,并整合认知中的概念和工具
具有大规模电生理学的科学。这将突破我们机械理解的界限
基于程序和符号知识的内部操作的推理。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lucas Y. Tian其他文献
Lucas Y. Tian的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lucas Y. Tian', 18)}}的其他基金
Investigating Symbolic Computation in the Brain: Neural Mechanisms of Compositionality
研究大脑中的符号计算:组合性的神经机制
- 批准号:
10644518 - 财政年份:2023
- 资助金额:
$ 7.48万 - 项目类别:
The planning of new compositional action sequences guided by interpretation of ambiguous sensory data in a novel drawing task
在新颖的绘画任务中通过解释模糊的感官数据来规划新的构图动作序列
- 批准号:
10266795 - 财政年份:2020
- 资助金额:
$ 7.48万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 7.48万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 7.48万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 7.48万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 7.48万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 7.48万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 7.48万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 7.48万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 7.48万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 7.48万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 7.48万 - 项目类别:
Research Grant














{{item.name}}会员




