Dissecting Therapeutic Resistance and Progression in Metastatic Melanoma Through Clinical Computational Oncology
通过临床计算肿瘤学剖析转移性黑色素瘤的治疗耐药性和进展
基本信息
- 批准号:10475605
- 负责人:
- 金额:$ 25.08万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-18 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:AlgorithmsAutomobile DrivingBRAF geneBindingBiologicalBiological MarkersCTLA4 blockadeCTLA4 geneClassificationClinicalClinical DataClinical MarkersCombined Modality TherapyComputational BiologyDataDevelopmentDiseaseEpigenetic ProcessEventFrequenciesGenomicsGoalsHumanImmunotherapyLightMachine LearningMediatingMeta-AnalysisMetastatic MelanomaModernizationMolecularMultiple Anatomic SitesMutationNF1 mutationOncologyPathway interactionsPatient CarePatient-Focused OutcomesPatientsPersonsPhylogenetic AnalysisPrediction of Response to TherapyPrognosisResistanceSamplingSeriesSiteStandardizationTailTherapeuticTimeVertebral columnclinical biomarkersclinically relevantcohortdriver mutationexperienceimmune checkpoint blockadeimprovedindividual patientinsightlongitudinal analysismelanomamolecular markermultimodalitynew therapeutic targetnovelnovel therapeutic interventionpatient subsetspredicting responsepredictive markerpredictive modelingprogrammed cell death protein 1receptorresponseresponse biomarkerside effectstatistical and machine learningtargeted treatmenttherapy resistanttranscriptomicstreatment responsetumortumor microenvironmenttumor progression
项目摘要
Project Summary
The development of targeted therapy (BRAF/MEKi) and immune checkpoint blockade (ICB) targeting the
co-inhibitory receptors CTLA-4 and PD-1 have revolutionized the treatment of metastatic melanoma. However,
only a subset of patients maintain durable responses, and many people experience substantial side effects of
therapy. Predicting therapeutic response in individual patients remains a critical and unresolved issue.
Furthermore, the series of key genomic and epigenetic events driving progression and resistance to therapy is
incompletely understood. The guiding hypothesis of this proposal is that (a) resistance to ICB and targeted
therapy is mediated by tumor intrinsic and extrinsic mechanisms, some of which may be elucidated by
systematic multi-modal molecular characterization of the tumor and tumor microenvironment; and (b)
applying modern machine-learning and statistical approaches to molecular and clinical data from patient
tumors will inform development of new therapeutic approaches and predictive models to improve patient
care.
Identifying and validating predictors of intrinsic resistance to BRAF/MEKi and ICB across large human
cohorts has been limited to date. Aim 1 of this proposal applies genomic and transcriptomic characterization of
pre-treatment tumors to large cohorts of patients treated with BRAF/MEKi, PD-1i, and CTLA-4i in order to
discover and to validate molecular and clinical markers of response and resistance. Machine learning
approaches will integrate these markers into parsimonious models predicting response. A differential analysis
using mutual information will be conducted to reveal markers that predict differential response to therapy.
A significant proportion of patients do not respond or maintained sustained responses to immunotherapy,
and there is a critical need to characterize the acquisition or selection of drivers that confer resistance to
immunotherapy. Aim 2 of this proposal develops algorithms using molecular characterization of longitudinally
collected tumor samples across multiple anatomic sites to discover genomic and epigenetic drivers of
progression and resistance to immunotherapy using phylogenetic analysis as the backbone of discovery.
Finally, the ability to detect novel tumor driver mutations present at low frequencies is strongly dependent
on cohort size. Aim 3 of this proposal leverages all genomically characterized melanomas to perform a meta-
analysis using state-of-the-art and novel algorithms to discover novel driver mutations present at low frequencies
with a focus on tumor subsets that lack known targetable drivers.
These studies will expand the actionable landscape of genomic and epigenetic alterations in metastatic
melanoma, advance our understanding of intrinsic and acquired resistance to targeted and immunotherapies in
melanoma, and establish a framework to predict response in individual patients, which may impact patient care
in melanoma and have applicability in other disease settings.
项目摘要
靶向治疗(BRAF/MEKi)和免疫检查点阻断(ICB)的发展,
共抑制受体CTLA-4和PD-1已经彻底改变了转移性黑素瘤的治疗。然而,在这方面,
只有一部分患者保持持久的反应,许多人经历了严重的副作用,
疗法预测个体患者的治疗反应仍然是一个关键且尚未解决的问题。
此外,一系列关键的基因组和表观遗传事件驱动的进展和耐药性的治疗,
不完全理解。这项建议的指导假设是:(a)对国际竞争性细菌的耐药性和针对性
治疗是由肿瘤内在和外在机制介导的,其中一些可以通过以下方式阐明:
肿瘤和肿瘤微环境的系统多模式分子表征;和(B)
将现代机器学习和统计方法应用于患者的分子和临床数据
肿瘤将为新的治疗方法和预测模型的开发提供信息,
在乎
在大型人类中识别和验证对BRAF/MEKi和ICB的内在抗性的预测因子
迄今为止,队列数量有限。该提案的目的1应用了以下基因组和转录组学表征:
将治疗前肿瘤转移至接受BRAF/MEKi、PD-1 i和CTLA-4 i治疗的大型患者队列,
发现和验证反应和耐药性的分子和临床标志物。机器学习
这些方法将把这些标记物整合到预测响应的简约模型中。的差分分析
将使用互信息来揭示预测对治疗的不同反应的标记。
很大一部分患者对免疫疗法没有反应或维持持续反应,
并且迫切需要表征赋予抗真菌性的驱动因子的获得或选择,
免疫疗法。该提案的目的2开发了使用纵向分子表征的算法,
收集了多个解剖部位的肿瘤样本,以发现基因组和表观遗传驱动因素,
使用系统发育分析作为发现的支柱来研究免疫疗法的进展和抗性。
最后,检测以低频率存在的新型肿瘤驱动突变的能力强烈依赖于
在队列规模上。该提案的目的3利用所有基因组特征的黑色素瘤来执行Meta,
使用最先进的新算法进行分析,以发现低频存在的新驱动突变
重点在于缺乏已知靶向驱动因子的肿瘤亚群。
这些研究将扩大转移性乳腺癌中基因组和表观遗传学改变的可操作范围,
黑色素瘤,推进我们对靶向和免疫治疗的内在和获得性抗性的理解,
黑色素瘤,并建立一个框架来预测个体患者的反应,这可能会影响患者的护理
在黑色素瘤中并适用于其他疾病环境。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Liu其他文献
David Liu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Liu', 18)}}的其他基金
Dissecting Therapeutic Resistance and Progression in Metastatic Melanoma Through Clinical Computational Oncology
通过临床计算肿瘤学剖析转移性黑色素瘤的治疗耐药性和进展
- 批准号:
10229579 - 财政年份:2018
- 资助金额:
$ 25.08万 - 项目类别:
Dissecting Therapeutic Resistance and Progression in Metastatic Melanoma Through Clinical Computational Oncology
通过临床计算肿瘤学剖析转移性黑色素瘤的治疗耐药性和进展
- 批准号:
9788340 - 财政年份:2018
- 资助金额:
$ 25.08万 - 项目类别:
Neurocognitive Mechanisms Underlying Children's Theory of Mind Development
儿童心理理论发展的神经认知机制
- 批准号:
8106222 - 财政年份:2010
- 资助金额:
$ 25.08万 - 项目类别:
Neurocognitive Mechanisms Underlying Children's Theory of Mind Development
儿童心理理论发展的神经认知机制
- 批准号:
7979071 - 财政年份:2010
- 资助金额:
$ 25.08万 - 项目类别:
相似海外基金
Establishment of a method for evaluating automobile driving ability focusing on frontal lobe functions and its application to accident prediction
以额叶功能为中心的汽车驾驶能力评价方法的建立及其在事故预测中的应用
- 批准号:
20K07947 - 财政年份:2020
- 资助金额:
$ 25.08万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Evaluation of the Effectiveness of Multi-Professional Collaborative Assessment of Cognitive Function and Automobile Driving Skills and Comprehensive Support
认知功能与汽车驾驶技能多专业协同评估效果评价及综合支持
- 批准号:
17K19824 - 财政年份:2017
- 资助金额:
$ 25.08万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Development of Flexible Automobile Driving Interface for Disabled People
残疾人灵活汽车驾驶界面开发
- 批准号:
25330237 - 财政年份:2013
- 资助金额:
$ 25.08万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Automobile driving among older people with dementia: the effect of an intervention using a support manual for family caregivers
患有痴呆症的老年人的汽车驾驶:使用家庭护理人员支持手册进行干预的效果
- 批准号:
23591741 - 财政年份:2011
- 资助金额:
$ 25.08万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




