Clinical Decision Support System to Optimize Neonatal Nutrition and Growth
优化新生儿营养和生长的临床决策支持系统
基本信息
- 批准号:10478336
- 负责人:
- 金额:$ 26.12万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:AgeAlgorithmsAwarenessBedsBirth WeightBronchopulmonary DysplasiaCalciumCarbohydratesCaringClinicalClinical Decision Support SystemsCountryCritical IllnessDataData AnalyticsDevelopmentEarly identificationElectrolytesElectronic Health RecordEnergy IntakeEnergy MetabolismEnsureEnteralEquilibriumEvaluationFailureFatty acid glycerol estersGoalsGrowthHandHarvestHeart RateHospitalizationInfantInstitutionIntakeIntravenous Fat EmulsionsLabelLifeLiquid substanceMacronutrients NutritionManualsMeasuresMedicalMicronutrientsModelingMonitorMulti-Institutional Clinical TrialNatural Language ProcessingNeonatalNeonatal Intensive Care UnitsNeurodevelopmental ImpairmentNutritionalNutritional RequirementsOutcomeOxygen ConsumptionParenteral NutritionPatientsPediatric HospitalsPhasePhysiologicalPredictive AnalyticsPremature InfantPrevalenceProteinsRespiratory distressRetinopathy of PrematuritySavingsScienceSourceTextTimeTranslatingVariantVery Low Birth Weight InfantWeightbasecommercial applicationcomorbiditydashboarddiscrete dataelectronic datafortificationimprovedinnovationneonatal sepsisnovelnutritionpostnatal
项目摘要
Project Summary/Abstract: Clinical Decision Support System to Optimize Neonatal Nutrition and
Growth
Nutrition, defined as energy, macronutrients (protein, fat, and carbohydrates), and micronutrients (e.g.,
electrolytes), is a critical feature of care for preterm infants in the neonatal intensive unit (NICU). Inadequate
nutrition is associated with growth and neurodevelopmental impairment, and increased rates of both
retinopathy of prematurity and bronchopulmonary dysplasia. Despite the recognized importance of nutrition
and growth, clinicians often fail to deliver the recommended intake with large deficits accruing during
hospitalization. Indeed, 50% of very low birth weight (VLBW, birth weight <1500g) infants leave the NICU at a
discharge weight <10th percentile for their corrected, postnatal age. We have determined that the majority of
NICUs affiliated with the Children’s Hospital Neonatal Consortium, a group of US and Canadian children’s
hospitals, lack Clinical Decision Support Systems (CDSS) to calculate nutrition intake. Moreover, of the
institutions with any CDSS to calculate caloric intake received, few could automatically calculate nutrition
intake from both parenteral and enteral sources without additional copying of data. Clinicians need data on
both nutrition and fluid intake to consider the trade-offs associated with various nutrition delivery practices
(e.g., parenteral nutrition, intravenous lipid emulsions, enteral fortification, and central line placement) and
balance judicious fluid management with optimal nutrition delivery. The goal of this project is to develop a novel
growth and nutrition dashboard, and model projected growth based on nutrition intake and physiologic data
from the multiparameter monitor. We hypothesize that presenting real-time, comprehensive nutrition and fluid
intake data from both parenteral and enteral sources alongside growth modelling will improve clinicians’ ability
to deliver high quality neonatal nutrition and achieve optimal growth. Improvements in nutrition are expected
from an enhanced situational awareness of the intake that an infant has already received, the cumulative
intake that an infant will receive from various nutrition practices, and modelling that accounts for heart rate
activity, a surrogate of energy expenditure.
项目摘要/摘要:优化新生儿营养和营养的临床决策支持系统
增长
营养,定义为能量、常量营养素(蛋白质、脂肪和碳水化合物)和微量营养素(例如,
电解质)是新生儿重症监护室(NICU)中早产儿护理的关键特征。不足
营养与生长和神经发育障碍有关,
早产儿视网膜病变和支气管肺发育不良。尽管营养的重要性是公认的
和增长,临床医生往往无法提供建议的摄入量与大赤字积累期间,
住院事实上,50%的极低出生体重(VLBW,出生体重<1500 g)婴儿离开NICU时,
出院体重<校正后出生后年龄的第10百分位数。我们已经确定,
NICU附属于儿童医院新生儿联盟,这是一个由美国和加拿大儿童组成的组织。
医院缺乏临床决策支持系统(CDSS)来计算营养摄入量。此外,
有任何CDSS计算热量摄入的机构,很少能自动计算营养
从胃肠外和肠内来源摄入,无需额外复制数据。临床医生需要数据,
营养和液体摄入量,以考虑与各种营养输送实践相关的权衡
(e.g.,肠外营养、静脉脂肪乳剂、肠内强化和中心静脉置管),
平衡明智的液体管理和最佳的营养输送。这个项目的目标是开发一部小说
生长和营养仪表板,以及基于营养摄入和生理数据的预测生长模型
从多参数监护仪上我们假设,提供实时,全面的营养和液体
来自肠外和肠内来源的摄入数据以及生长建模将提高临床医生的能力,
提供高质量的新生儿营养,实现最佳生长。预计营养状况将有所改善
通过对婴儿已经接受的摄入量的增强的情境意识,
婴儿将从各种营养实践中获得的摄入量,以及考虑心率的建模
活动,能量消耗的替代品。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
William E King其他文献
William E King的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 26.12万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 26.12万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 26.12万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 26.12万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 26.12万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 26.12万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 26.12万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 26.12万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 26.12万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 26.12万 - 项目类别:
Continuing Grant














{{item.name}}会员




