MS-based metabolite identification

基于 MS 的代谢物鉴定

基本信息

  • 批准号:
    10478827
  • 负责人:
  • 金额:
    $ 19.33万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-15 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

Project Summary This proposal aims to develop an innovative metabolite identification algorithm for metabolomics using liquid or gas chromatography coupled with mass spectrometry (LC/GC-MS) by addressing two important components of data analysis: peak detection and compound identification. Metabolomics has great potential to impact clinical health practices due to its ability to rapidly analyze tissue or biofluid samples with little sample preparation, and metabolomics provides information that complements the genomic and proteomic profile of a patient. However, peak detection and compound identification remain as significant challenges for metabolomics. Low quality signal hampers every step of data analyses including, but not limited, peak detection and compound identification. In particular, metabolite identification accuracy suffers from a high rate of false identification that can mislead the downstream analysis such as network construction and biomarker discovery. To alleviate these issues, we propose to develop an innovative metabolite identification algorithm for LC/GC-MS based metabolomics, by accomplishing two highly interconnected goals: peak detection and compound identification by generating augmented signals and using both MS similarity and retention times. The proposed statistical/computational approaches will lead to novel methodology for compound identification in analyzing LC/GC-MS data. The metabolic identification algorithms developed from this project will enable accurate metabolite identification by simultaneously considering MS similarity and retention time.
项目摘要 该提案旨在开发一种创新的代谢物鉴定算法,用于代谢组学, 气相色谱-质谱联用(LC/GC-MS),通过解决两个重要组成部分, 数据分析:峰检测和化合物鉴定。代谢组学有很大的潜力影响临床 由于其能够快速分析组织或生物流体样品,且样品制备很少, 代谢组学提供补充患者的基因组和蛋白质组谱的信息。然而,在这方面, 峰检测和化合物鉴定仍然是代谢组学的重要挑战。低质量 信号阻碍了数据分析的每一步,包括但不限于峰检测和化合物识别。 特别地,代谢物鉴定准确性受到高错误鉴定率的影响,该错误鉴定率可能误导鉴定者。 下游分析,如网络构建和生物标志物发现。为了解决这些问题,我们 建议为基于代谢组学的LC/GC-MS开发创新的代谢物鉴定算法, 实现两个高度相互关联的目标:峰值检测和化合物识别, 增强的信号,并使用MS相似性和保留时间。统计/计算 这些方法将导致在分析LC/GC-MS数据中用于化合物鉴定的新方法。的 从该项目开发的代谢识别算法将通过以下方式实现准确的代谢物识别: 同时考虑MS相似性和保留时间。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Seongho Kim其他文献

Seongho Kim的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 19.33万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 19.33万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 19.33万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 19.33万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 19.33万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 19.33万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 19.33万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 19.33万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 19.33万
  • 项目类别:
    Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 19.33万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了