Antiviral Polymers for Development of Rapid Reuse, Next Generation PPE

用于开发快速重复使用的下一代个人防护装备的抗病毒聚合物

基本信息

  • 批准号:
    10480617
  • 负责人:
  • 金额:
    $ 24.35万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-15 至 2023-03-15
  • 项目状态:
    已结题

项目摘要

Abstract The ability of face masks and other forms of personal protective equipment (PPE) to reduce and/or prevent the possibility of cross-infection and transmission is of critical importance in occupational environments where aerosolized pathogens may be encountered (ie. COVID-19 intensive care units, etc.). Because viruses and microorganisms can survive on surfaces for a few hours to several days, respirator masks and other forms of PPE that have been contaminated with pathogens can become secondary sources of infection for the wearer and others, thus limiting them to single use. In recent months, this has led to N95 respirator shortages worldwide and an undeniable public plea from our nation’s medical professionals for better PPE resources to help mitigate the dangers of viral cross-infection from contaminated PPE in their high-risk occupational environments. There is an urgent moral obligation for the science and business community to develop the next-generation of anti- viral resources to protect the occupational safety of professionals on the frontlines of this and future pandemics. Towards that aim, Seacoast Science, Inc. in collaboration with Professor Dave Spivak (APTEC) propose the co-development of antiviral polymer coatings for application in rapid reuse PPE. Leveraging a known salt crystallization mechanism, proven to kill pathogens via hydration and subsequent recrystallization from human breath, we hypothesize the use of a modified polymeric salt will equally provide SARS CoV-2 inactivation while enhancing mechanical properties for improved compatibility with melt blown fibers of N95 masks vs. table salt. We will develop Polyethyleneimine (PEI) branched polymers with increased osmotic pressure and high antiviral activity that are adhered to a substrate of activated charcoal (AC) to tune polymer loading and filter pore size. This smart, responsive materials system can be used to modify the blown-polymer fiber filters used in N95 masks and/or deposited as anti-viral coatings on other forms of PPE. The proposed technology is anticipated to extend the useful lifetime of N95 masks beyond the single use recommendation, affording protection over multiple uses. In phase I, Seacoast will establish proof-of-concept that the proposed system can be applied to N95 respirators to augment virus negation and increase mask lifetime. Anti-viral polymers will be synthesized utilizing facile, modular, high-yielding chemistry that is compatible with scalable, multi-gram batches and low-cost solution processing. These polymers will be solution deposited onto the blown-polymer fiber filters used in N95 masks, which have been surface-treated with AC. We will evaluate the geometric, mechanical, and hygroscopic behavior of these novel materials, demonstrating their capacity to induce osmotic effects (vs. non-polymeric salt solutions) across membranes structurally analogous to viral envelopes. Seacoast will down-select the top material(s) from these initial experiments and test them against viable COVID analogues in a regulated BSL3 lab to demonstrate efficacy. The proposed virus negating materials are anticipated to facilitate the advent of rugged, anti-viral coatings for the next-generation of rapid-reuse PPE for SARS CoV-2 and emerging variants (delta, mu, etc.).
摘要 口罩和其他形式的个人防护装备(PPE)减少和/或预防的能力 交叉感染和传播的可能性在以下职业环境中至关重要 可能会遇到雾化病原体(即。新冠肺炎重症监护室等)。因为病毒和 微生物可以在呼吸器面罩和其他形式的个人防护用品表面存活几个小时到几天 已被病原体污染的可成为佩戴者的次要感染源 其他的,从而将它们限制为单次使用。近几个月来,这导致N95呼吸器在全球范围内短缺 以及来自我国医疗专业人员的不可否认的公开请求,要求更好的个人防护资源,以帮助缓解 在他们的高危职业环境中,受污染的个人防护用品造成病毒交叉感染的危险。那里 是科学界和企业界迫切的道德义务,要发展下一代反 病毒资源,以保护处于当前和未来大流行第一线的专业人员的职业安全。 为此,海岸科学公司与戴夫·斯皮瓦克教授(APTEC)合作,提出了 共同开发用于快速重复使用个人防护设备的抗病毒聚合物涂层。利用已知的盐 结晶机制,经证实可通过水化和随后的重结晶杀死人体内的病原体 呼吸,我们假设使用改进的聚合物盐将同样提供SARS CoV-2灭活,而同时 增强机械性能,以改善与N95口罩与食盐的熔喷纤维的兼容性。 我们将开发具有高渗透压和高抗病毒能力的聚乙烯亚胺(PEI)支化聚合物 附着在活性碳(AC)底物上以调节聚合物负载和过滤孔径大小的活性。 这种智能、灵敏的材料系统可用于改进N95面具中使用的吹塑聚合物纤维过滤器 和/或作为抗病毒涂层沉积在其他形式的个人防护设备上。拟议中的技术预计将扩展到 N95口罩的使用寿命超出了单次使用建议,可为多种用途提供保护。 在第一阶段,海岸公司将建立概念证明,即拟议的系统可以应用于N95呼吸器 增强病毒抵抗力,延长口罩寿命。抗病毒聚合物将利用简便易行, 与可扩展的多克批次和低成本解决方案兼容的模块化、高产量化学产品 正在处理。这些聚合物将被溶液沉积到N95面具中使用的吹塑聚合物纤维过滤器上, 用AC对其进行了表面处理。我们将评估几何、机械和吸湿性能 这些新材料,展示了它们诱导渗透效应的能力(与非聚合物盐溶液相比) 在结构上类似于病毒膜的跨膜。《海岸》将向下挑选顶级素材(S) 这些初步实验并在受监管的BSL3实验室中与可行的COVID类似物进行测试,以证明 功效。拟议的病毒否定材料有望促进坚固耐用的抗病毒材料的出现 用于SARS CoV-2和新兴变种(Delta、Mu等)的下一代快速重复使用个人防护设备的涂料。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

John Cowart其他文献

John Cowart的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Development of catalysts for effective synthesis of nitrogen-containing polymers derived from chitin
开发有效合成甲壳素含氮聚合物的催化剂
  • 批准号:
    23K13780
  • 财政年份:
    2023
  • 资助金额:
    $ 24.35万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Anion conductive polymers: new development for energy devices
阴离子导电聚合物:能源器件的新发展
  • 批准号:
    22KF0156
  • 财政年份:
    2023
  • 资助金额:
    $ 24.35万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Development of Universal Chiral Visualization Technique Using Helical Polymers and Challenge to Hidden Chirality
使用螺旋聚合物的通用手性可视化技术的发展和对隐藏手性的挑战
  • 批准号:
    23K13791
  • 财政年份:
    2023
  • 资助金额:
    $ 24.35万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Development of smart culture substrates using light- and temperature-responsive polymers and creation of cell regulation systems
使用光和温度响应聚合物开发智能培养基质并创建细胞调节系统
  • 批准号:
    23KJ2110
  • 财政年份:
    2023
  • 资助金额:
    $ 24.35万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Development of Highly Crystalline Thiazolothiazole-based Polymers for improvement of Organic Photovoltaics Performance
开发高结晶噻唑并噻唑基聚合物以改善有机光伏性能
  • 批准号:
    23KJ1631
  • 财政年份:
    2023
  • 资助金额:
    $ 24.35万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Development of Nano-hybrid Polymer Brushes by Umpolung of Conducting Polymers and their Electrocatalytic Applications
导电聚合物纳米杂化聚合物刷的开发及其电催化应用
  • 批准号:
    23K13557
  • 财政年份:
    2023
  • 资助金额:
    $ 24.35万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Development of Optoelectronic Properties of Conjugated Polymers Consisting of Typical Element Complexes Based on Even-Electrons/Odd-Atoms Systems
基于偶电子/奇原子体系的典型元素配合物共轭聚合物光电性能研究
  • 批准号:
    23K13793
  • 财政年份:
    2023
  • 资助金额:
    $ 24.35万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Development of Precisely Controlled Cationic Copolymerization Systems for Polymers with Controlled Molecular Weight, Monomer Sequence, and Degradability
开发精确控制的阳离子共聚体系,用于控制分子量、单体序列和降解性的聚合物
  • 批准号:
    23H02010
  • 财政年份:
    2023
  • 资助金额:
    $ 24.35万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of BioMEMS based on mechanochromic polymers
基于力致变色聚合物的BioMEMS的开发
  • 批准号:
    22KF0108
  • 财政年份:
    2023
  • 资助金额:
    $ 24.35万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Development of high performance thermocells based on redox polymers
基于氧化还原聚合物的高性能热电池的开发
  • 批准号:
    23K13634
  • 财政年份:
    2023
  • 资助金额:
    $ 24.35万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了