Adaptive & Individualized AAC
自适应
基本信息
- 批准号:10482070
- 负责人:
- 金额:$ 57.57万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-01 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAlgorithmsAmericanAugmentative and Alternative CommunicationBostonBrain Stem InfarctionsCalibrationCaregiver supportCaregiversCerebral PalsyClinicalCommunicationCommunication MethodsCommunication impairmentComputer softwareComputersCustomDropsEvaluationFamilyForeheadFrustrationGenetic TranscriptionGesturesGoalsGuillain Barré SyndromeHandHeadHospitalsIndividualInstitutesIntuitionLearningLettersLifeMaintenanceManualsMethodsMissionModificationMotorMotor ActivityMovementNational Institute on Deafness and Other Communication DisordersNerve DegenerationNeuromuscular DiseasesParticipantPerformancePersonsPhasePopulationQuality of lifeRehabilitation therapyResearch PersonnelResidual stateScanningSocializationSpeechSpinal cord injuryStrokeSurfaceSurveysSystemTablet ComputerTarget PopulationsTechnologyTestingTraumatic Brain InjuryUniversitiesWorkWorkloadalternative communicationautomated algorithmbasecommunication devicedata exchangedeafnessdesigndexteritydisabilityexperiencefoothandheld mobile deviceimprovedmotor impairmentnovelpoint of carepreferencerehabilitation engineeringrehabilitation sciencesensorusabilityuser friendly softwarevisual trackingwirelesswireless communication
项目摘要
Nearly 5 million Americans require augmentative and alternative communication (AAC) methods to meet their
daily communication needs. Some of these high-need individuals have motor impairments so severe (due to
conditions such as brainstem stroke, traumatic brain injury, Guillain Barré syndrome, and cerebral palsy, among
other disabilities) that they do not have the manual dexterity to control AAC technology and require alternative
access methods (such as eye-tracking, head-tracking, or switch-scanning). Existing solutions, however, require
extensive maintenance, frequent re-calibrations, and manual interface modifications that must be carried out
with continued assistance from a caregiver or by compensating via their own residual motor activity. The
excessive workload of adapting to these alternative communication methods are among the leading causes of
AAC abandonment, ultimately depriving this population of their fundamental right to communication. To meet
the critical communication needs of individuals with severe motor impairments, we propose the first AAC
device comprising a versatile access method that automatically learns and customizes a keyboard interface to
the residual motor function of the individual. In Phase I, we established the feasibility of developing a
personalized keyboard interface (limited to A–Z, space) based on an individual’s cursor movement and target
selection abilities using a combined surface electromyographic (sEMG) and inertial (IMU) access method placed
on their forehead. When evaluated amongst individuals with and without severe motor impairments, our AAC
solution achieved greater information transfer rates (ITRs) over the standard QWERTY keyboard. Having
successfully demonstrated this proof-of-concept, we are collaborating with speech researchers and clinicians at
Boston University, MA (STEPP Lab for Sensorimotor Rehabilitation Engineering) and Madonna Rehabilitation
Hospital, NE (Institute for Rehabilitation Science and Engineering) to advance our Phase I system into a pre-
commercial MyAACTM system comprising versatile access method and personalized, comprehensive
communication software. We will achieve this by developing hardware to support streamlined access across
multiple points on the body (Aim 1), designing automated algorithms to rapidly create an expanded AAC
interface, inclusive of letters, numbers, symbols, emojis, and word completion options, that is personalized based
on the residual motor function of user-specific access points (Aim 2), creating software for point-of-care use of
the access technology and interface, and evaluating the resulting MyAACTM system for communication efficacy
in individuals with severe motor impairments (Aim 3). Our milestone will be to demonstrate that MyAACTM
improves ITR and user experience over conventional AAC devices. The final MyAACTM deliverable will be easily
integrated with existing AAC tablets and mobile devices to provide those in need of alternative communication
methods with an automatically customized, efficient, and intuitive solution to restore communication access in
their daily lives.
近500万美国人需要增强和替代通信(AAC)方法来满足其
日常交流需要。这些高度需要的人中,有些人的运动障碍非常严重(由于
情况如脑干中风、创伤性脑损伤、格林-巴利综合征和脑瘫,其中
其他残疾),他们没有手动控制AAC技术的灵活性,需要替代技术
访问方法(如眼睛跟踪、头部跟踪或切换扫描)。然而,现有的解决方案需要
必须进行广泛的维护、频繁的重新校准和手动界面修改
通过照顾者的持续帮助或通过他们自己的残余运动活动进行补偿。这个
适应这些替代沟通方法的工作量过大是导致
AAC放弃,最终剥夺了这一群体的基本通信权利。相遇
针对严重运动障碍患者的关键沟通需求,我们提出了首个AAC
包括多功能访问方法的设备,该访问方法自动学习和定制键盘接口以
个体的残存运动功能。在第一阶段,我们确定了开发一种
基于个人光标移动和目标的个性化键盘界面(限于A-Z,空格)
使用表面肌电(SEMG)和惯性(IMU)相结合的方法放置的选择能力
在他们的额头上。当在有和没有严重运动障碍的个体中进行评估时,我们的AAC
与标准QWERTY键盘相比,该解决方案实现了更高的信息传输速率(ITR)。拥有
成功演示了这一概念验证,我们正在与语音研究人员和临床医生合作,网址为
波士顿大学,马萨诸塞州(Stepp Lab For Sensorimotor Recovery Engineering)和麦当娜康复
医院,NE(康复科学与工程研究所)将我们的第一阶段系统推进到
商业MyAACTM系统,包括通用的访问方式和个性化的、全面的
通信软件。我们将通过开发硬件来实现这一点,以支持跨
身体上的多个点(目标1),设计自动算法以快速创建扩展的AAC
界面,包括字母、数字、符号、表情符号和单词完成选项,基于个性化
关于用户特定接入点的残余运动功能(目标2),创建用于护理点使用的软件
接入技术和接口,并评估由此产生的MyAACTM系统的通信效率
有严重运动障碍的个人(目标3)。我们的里程碑将是证明MyAACTM
与传统的AAC设备相比,改善了ITR和用户体验。MyAACTM的最终交付成果将很容易
与现有AAC平板电脑和移动设备集成,为需要替代通信的用户提供支持
使用自动定制、高效和直观的解决方案恢复通信访问的方法
他们的日常生活。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jennifer Michele Vojtech其他文献
Jennifer Michele Vojtech的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jennifer Michele Vojtech', 18)}}的其他基金
Non-Contact Solution for Quantitative Clinical Management of MTD
MTD 定量临床管理的非接触式解决方案
- 批准号:
10256594 - 财政年份:2022
- 资助金额:
$ 57.57万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 57.57万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 57.57万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 57.57万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 57.57万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 57.57万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 57.57万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 57.57万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 57.57万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 57.57万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 57.57万 - 项目类别:
Continuing Grant