Identifying and Targeting Master Regulators of Drug Resistance in Lung Adenocarcinoma through Network Analysis of Tumor Transcriptomic Data
通过肿瘤转录组数据的网络分析识别和靶向肺腺癌耐药性的主调节因子
基本信息
- 批准号:10487448
- 负责人:
- 金额:$ 5.18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:A549AlgorithmsAntineoplastic AgentsBiologicalBiological MarkersCancer EtiologyCancer cell lineCell LineCellsCertificationCessation of lifeChestClinicalClinical OncologyClinical TrialsClustered Regularly Interspaced Short Palindromic RepeatsComputational BiologyDNA Sequence AlterationDataDevelopmentDiagnosisDiseaseDrug resistanceEpidermal Growth Factor ReceptorEpidermal Growth Factor Receptor Tyrosine Kinase InhibitorFDA approvedFellowshipGene ExpressionGenetic TranscriptionGenomicsHematologyHistologicHospitalsImmune checkpoint inhibitorImmunocompetentIn VitroInternal MedicineInvestigationLaboratoriesLung AdenocarcinomaMachine LearningMalignant neoplasm of lungMeasuresMedicalMedical OncologyMedical centerMethodsModalityMutateNew YorkOncogenicOncologistOncoproteinsPathway AnalysisPatient-Focused OutcomesPatientsPharmaceutical PreparationsPharmacologyPhenotypePhysiciansPresbyterian ChurchProtein-Serine-Threonine KinasesProteinsQuality of lifeResearch Project GrantsResidenciesResistanceScientistStatistical MethodsSurgeonSystems BiologyTechnologyTrainingTranscription Regulatory ProteinTranslational ResearchTumor MarkersTumor Suppressor ProteinsTyrosine Kinase InhibitorUnited StatesUniversitiesUpdateWorkbasecancer gene expressioncancer subtypescareerclinically actionablecohortcollegecomputer studiesdriver mutationdrug sensitivitygenomic biomarkerhigh throughput analysisimmunohistochemical markersimprovedin silicoin vivoknock-downmachine learning classifiermortalitymouse modelmutantnext generation sequencingnovelpatient derived xenograft modelpre-doctoralprecision oncologyprognostic valueprogramsreconstructionresponsesingle-cell RNA sequencingstandard of caresuccesstargeted treatmenttranscription regulatory networktranscriptomicstreatment strategytumor
项目摘要
Project Summary/Abstract
Lung cancer, the leading cause of cancer-related mortality in the United States, is responsible for more than
100,000 deaths each year. The treatment of metastatic lung adenocarcinoma (LUAD), the most common
histological subtype of lung cancer, has improved substantially in recent decades through the advent of targeted
therapy for tumors with oncogenic driver mutations and immune checkpoint inhibitors for those without. However,
up to 50% of metastatic LUAD tumors will not respond to standard-of-care antineoplastic therapy. Previous
precision oncology efforts to discover genomic or immunohistochemical biomarkers of LUAD tumor drug
sensitivity have achieved limited success. To remedy these shortcomings, we propose to leverage a translational
systems biology approach to identify and target the biological determinants of drug resistance in LUAD through
network analysis of tumor transcriptomic data. Due to advances in computational biology and next-generation
sequencing technologies, the dynamic expression of genes within each patient’s LUAD tumor may be accurately
measured, providing a novel window for the identification of the key transcriptional regulatory proteins which
initiate and maintain drug-resistant tumor phenotypes (i.e. Master Regulators). The systematic identification of
Master Regulator proteins can be achieved with Non-parametric analytical Rank-based Enrichment Analysis
(NaRnEA), a newly developed statistical method capable of leveraging context-specific transcriptional regulatory
networks to extract highly mechanistic information from LUAD tumor transcriptomic data for in silico precision
oncology, thus overcoming the limitations of previous genomic and immunohistochemical approaches. NaRnEA-
inferred activity of Master Regulator proteins which coordinate resistance to targeted therapy will be leveraged
for the development of a transcriptomic machine learning biomarker of drug-sensitivity. Additionally, one-of-a-
kind perturbational gene expression profiles for >400 FDA-approved and investigational compounds in the LUAD
cell line NCIH1793 will be interrogated to identify drugs capable of targeting these Master Regulators of drug-
resistance using the OncoTreat algorithm, a novel systems biology precision oncology method which has
received NYS CLIA certification and is currently in use for multiple clinical trials at the Columbia University Irving
Medical Center. This translational research project will coincide with simultaneous scientific and clinical training
as the applicant studies computational biology and works closely with thoracic oncologists at CUIMC,
respectively. Following the completion of this research project the applicant will complete clinical training at the
New York Presbyterian Hospital through the Columbia University Vagelos College of Physicians and Surgeons.
This combined scientific and medical predoctoral fellowship will prepare the applicant for an Internal Medicine
residency and a Hematology/Oncology clinical fellowship culminating in a career as an independent physician-
scientist in the field of precision medical oncology.
项目总结/文摘
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Aaron Timothy Griffin其他文献
Aaron Timothy Griffin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Aaron Timothy Griffin', 18)}}的其他基金
Identifying and Targeting Master Regulators of Drug Resistance in Lung Adenocarcinoma through Network Analysis of Tumor Transcriptomic Data
通过肿瘤转录组数据的网络分析识别和靶向肺腺癌耐药性的主调节因子
- 批准号:
10315207 - 财政年份:2021
- 资助金额:
$ 5.18万 - 项目类别:
Identifying and Targeting Master Regulators of Drug Resistance in Lung Adenocarcinoma through Network Analysis of Tumor Transcriptomic Data
通过肿瘤转录组数据的网络分析识别和靶向肺腺癌耐药性的主调节因子
- 批准号:
10676216 - 财政年份:2021
- 资助金额:
$ 5.18万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 5.18万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 5.18万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 5.18万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 5.18万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 5.18万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 5.18万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 5.18万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 5.18万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 5.18万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 5.18万 - 项目类别:
Continuing Grant














{{item.name}}会员




