Computational approaches to unravel immune receptor sequencing for cancer immunotherapy
揭示癌症免疫治疗免疫受体测序的计算方法
基本信息
- 批准号:10490312
- 负责人:
- 金额:$ 18.32万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-17 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:Adaptive Immune SystemAlgorithmsAmino Acid MotifsAntigensArchitectureB cell repertoireB-Cell Antigen ReceptorB-LymphocytesBioinformaticsCellsClassificationClinicalComputational TechniqueComputer softwareCustomDataDevelopmentDiseaseEnvironmentEpitopesFutureGenetic HeterogeneityGoalsGraphImmuneImmune responseImmunodiagnosticsImmunoglobulinsImmunologic ReceptorsImmunotherapeutic agentImmunotherapyInfectionLeadMachine LearningMalignant NeoplasmsMeasuresMetadataMethodsModelingMolecularNatureNetwork-basedOutcomePathway AnalysisPatternProbabilityProceduresProcessRoleSamplingSpecificityStatistical MethodsT-Cell ReceptorT-LymphocyteTechniquesTimeTumor ImmunityVisualizationVisualization softwareadaptive immune responseanalysis pipelineantigen antibody bindingbasebioinformatics toolbiomarker discoverycancer immunotherapyclinical prognosticclinically relevantcomputational pipelinesfeature selectionflexibilityhigh dimensionalityimprovednetwork architecturenext generation sequencingnovelopen sourceperformance testsreceptorresponders and non-respondersresponsesingle-cell RNA sequencingstatisticstooltranscriptomeuser-friendly
项目摘要
PROJECT SUMMARY
The adaptive immune system is responsible for the specific recognition and elimination of antigens
originating from infection and disease. It recognizes antigens via an immense array of antigen-binding antibodies
(B-cell receptors, BCRs) and T-cell receptors (TCRs), the immune repertoire. Because of the enormous breadth
of epitopes recognized by immune repertoires, immune repertoires are extremely diverse and dynamic.
Advances in immune receptor sequencing (Rep-seq), such as next generation sequencing, have driven the
quantitative and molecular-level profiling of immune repertoires, thereby revealing the high-dimensional
complexity of the immune receptor sequence landscape. However, current analysis tools lack the ability to track
and examine the dynamic nature of the repertoire across serial time points or to identify the common features
across repertoires thoroughly and efficiently. We will develop computationally efficient methods with advanced
machine learning techniques, including network analysis, feature selection and classification, and advanced
statistical approaches, to interrogate and measure immune repertoire architecture longitudinally, to identify
common features across repertoires and to assess their clinical relevance. Network analysis is a powerful
approach that can identify TCRs sharing antigen specificity and highly mutable BCR, which can help to develop
or improve existing immunotherapeutics and immunodiagnostics. However, network construction is
computationally expensive, therefore, we will develop an adaptive subsampling strategy to relieve computation
burden. We will implement the proposed methods on two studies to better illustrate the diversity and richness of
the data to demonstrate the flexibility and power of the proposed tools. Furthermore, we will develop
bioinformatics software by incorporating the proposed methods and techniques to tackle the complexity of the
Rep-seq data in a translational fashion and provide a comprehensive platform with user-friendly visualization
tools.
项目摘要
适应性免疫系统负责抗原的特异性识别和消除
源于感染和疾病。它通过大量的抗原结合抗体识别抗原
细胞受体(B细胞受体,BCR)和T细胞受体(TCR),即免疫库。由于其巨大的宽度
在免疫库识别的表位中,免疫库是极其多样和动态的。
免疫受体测序(Rep-seq)的进展,如下一代测序,已经推动了免疫系统的发展。
免疫库的定量和分子水平分析,从而揭示了高维
免疫受体序列景观的复杂性。然而,目前的分析工具缺乏跟踪能力,
并检查跨序列时间点的剧目的动态性质,或者识别共同特征,
彻底而有效地进行交流我们将开发计算效率高的方法,
机器学习技术,包括网络分析,特征选择和分类,以及高级
统计学方法,纵向询问和测量免疫库结构,
所有库的共同特征,并评估其临床相关性。网络分析是一种强大的
这种方法可以识别具有抗原特异性的TCR和高度可变的BCR,这有助于开发
或改进现有的免疫治疗和免疫诊断。网络建设是
计算昂贵,因此,我们将开发一种自适应子采样策略,以减轻计算
负担我们将在两项研究中实施所提出的方法,以更好地说明
数据来证明所提出的工具的灵活性和功能。此外,我们将开发
生物信息学软件,结合提出的方法和技术,以解决复杂的
Rep-seq数据以一种平移的方式,并提供一个全面的平台,用户友好的可视化
工具.
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Modulation of myeloid and T cells in vivo by Bruton's tyrosine kinase inhibitor ibrutinib in patients with metastatic pancreatic ductal adenocarcinoma.
- DOI:10.1136/jitc-2022-005425
- 发表时间:2023-01
- 期刊:
- 影响因子:10.9
- 作者:
- 通讯作者:
Novel Ensemble Feature Selection Approach and Application in Repertoire Sequencing Data.
- DOI:10.3389/fgene.2022.821832
- 发表时间:2022
- 期刊:
- 影响因子:3.7
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Li Zhang其他文献
Ramanujan-type congruences for overpartitions modulo 3
模 3 过度划分的拉马努金型同余
- DOI:
10.1216/rmj.2020.50.2257 - 发表时间:
2020 - 期刊:
- 影响因子:0.8
- 作者:
Li Zhang - 通讯作者:
Li Zhang
Li Zhang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Li Zhang', 18)}}的其他基金
Investigation of the landscape of immunosequencing and its clinical relevance through novel immunoinformatic approaches
通过新型免疫信息学方法研究免疫测序的前景及其临床相关性
- 批准号:
10651683 - 财政年份:2022
- 资助金额:
$ 18.32万 - 项目类别:
Investigation of the landscape of immunosequencing and its clinical relevance through novel immunoinformatic approaches
通过新型免疫信息学方法研究免疫测序的前景及其临床相关性
- 批准号:
10446946 - 财政年份:2022
- 资助金额:
$ 18.32万 - 项目类别:
Computational approaches to unravel immune receptor sequencing for cancer immunotherapy
揭示癌症免疫治疗免疫受体测序的计算方法
- 批准号:
10305538 - 财政年份:2021
- 资助金额:
$ 18.32万 - 项目类别:
Molecular Mechanism Governing Oxygen Signaling and Heme Regulation by Gis1
Gis1 控制氧信号传导和血红素调节的分子机制
- 批准号:
8770294 - 财政年份:2014
- 资助金额:
$ 18.32万 - 项目类别:
Molecular Mechanism Governing Oxygen Signaling and Heme Regulation by Gis1
Gis1 控制氧信号传导和血红素调节的分子机制
- 批准号:
9059941 - 财政年份:2014
- 资助金额:
$ 18.32万 - 项目类别:
Molecular Mechanism Governing Oxygen Signaling and Heme Regulation by Gis1
Gis1 控制氧信号传导和血红素调节的分子机制
- 批准号:
9072488 - 财政年份:2014
- 资助金额:
$ 18.32万 - 项目类别:
An Oxygen-Sensing Network Involving Heme and Chaperones
涉及血红素和伴侣的氧传感网络
- 批准号:
7901855 - 财政年份:2009
- 资助金额:
$ 18.32万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 18.32万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 18.32万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 18.32万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 18.32万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 18.32万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 18.32万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 18.32万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 18.32万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 18.32万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 18.32万 - 项目类别:
Research Grant