Describing the Epigenetic Mechanisms in Control of Hematopoietic Development and Rapid Inflammatory Responses
描述控制造血发育和快速炎症反应的表观遗传机制
基本信息
- 批准号:10490961
- 负责人:
- 金额:$ 4.68万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-01-31 至 2024-01-30
- 项目状态:已结题
- 来源:
- 关键词:Animal ModelArginineBacterial InfectionsBase PairingBiological ModelsBiological ProcessBiologyBloodBlood CellsBone MarrowCell Differentiation processCell LineCell LineageCell physiologyCellsChromatinCollaborationsComplexDNA biosynthesisDataDefectDevelopmentDiGeorge SyndromeDiseaseEnhancersEpigenetic ProcessFaceFoundationsFutureGene ExpressionGene Expression RegulationGenesGeneticGenetic ModelsGenetic TranscriptionGenomeGoalsHealthHematopoiesisHematopoieticHematopoietic stem cellsHeterochromatinHigh-Throughput Nucleotide SequencingHistone H3HistonesHumanImmuneImmune responseImmunityIndividualInfectionInflammatory ResponseKnock-outKnowledgeLentivirusLinkListeriaLysineMalignant NeoplasmsMapsModelingModificationMusMutationMyeloid CellsOrganismPathway interactionsPatientsPhenotypePost-Translational Protein ProcessingProcessProteinsReaderRegulationRegulatory PathwayResearchRoleSerineSignal TransductionSpeedSpleenSystemT-LymphocyteTailTestingTissuesTrainingVariantVertebratesYeastsadult stem cellbasecell typeepigenetic regulationexhaustionexperimental studyextracellularflyhistone modificationin vivoinsightinterestmacrophagemammalian genomemouse modelmutantnovelpathogenprogenitorpromoterresponsescreeningstem cell survivaltherapeutic target
项目摘要
Project Summary
Complex organisms face daunting “epigenetic challenges”. How is a single genome interpreted to instruct over
one thousand distinct cell fates? How do extracellular signals rapidly and robustly turn on select genes in the
three billion base-pair genome? Epigenetic mechanisms underlie balanced blood cell differentiation and the
speed and scope of cellular responses to pathogens or tissue damage—features that define immunity, tolerance,
and survival during infection. Critical to understanding the mechanisms that “solve” these epigenetic challenges
is the study of histones, proteins that package and regulate the genome. The focus of this project is to reveal the
function of histones and histone post-translational modifications (PTMs) in mammalian organisms. Of particular
interest is Histone variant H3.3, which represents 2 of 15 copies of H3 in the genome but is enriched in
dynamically regulated chromatin such as enhancers, promotors and gene bodies. Additionally, H3.3 is the only
H3 that is expressed in a DNA synthesis independent fashion. For these reasons we have focused on studying
the function of H3.3 residues and modifications in hematopoietic development and immune cell function as these
systems reflect complex mammalian development and rapid cellular responses, and are highly relevant to health
and disease.
Preliminary experiments focused on the function of co-transcriptional modification H3.3S31ph, and loss
of this mark abrogates the ability of a macrophage cell line (RAW264.7s) to respond to LPS. To examine which
other H3.3 residues and modifications are required for this rapid transcriptional response, I have developed a
novel knockout and replacement system in BMDMs (Aim 1). Early results have shown that mutation of certain
lysine residues to arginine (H3.3K4R, H3.3K36R) leads to decreased stimulation-induced transcription, whereas
others (H3.3K9R, H3.3K27R) have no effect. To validate the functional relevance of these results, we have
shown the requirement of H3.3 for in vivo immune response to listeria. Our results will inform ongoing studies to
define dedicated mechanisms for rapid transcription.
Additionally, we will use this model of knockout and replacement to determine the function of H3.3 and
key residues in hematopoietic development (Aim 2). Initial experiments shown the requirement for H3.3 in
hematopoietic stem cell survival, and macrophage differentiation. Targeted and unbiased screening of histone
“readers, writers, and erasers” will enable us to link H3.3 mutant phenotypes to chromatin regulatory pathways
and factors. Together these studies will elucidate how epigenetic mechanisms can regulate cellular differentiation
and the speed and scope of cellular responses. By advancing basic knowledge of the epigenetic mechanisms
regulating these cellular processes, the proposed research will have broad implications for basic biology and
disease, as well as direct implications in bacterial infection and patients with H3.3 pathway mutations.
项目总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrew Daman其他文献
Andrew Daman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrew Daman', 18)}}的其他基金
Describing the Epigenetic Mechanisms in Control of Hematopoietic Development and Rapid Inflammatory Responses
描述控制造血发育和快速炎症反应的表观遗传机制
- 批准号:
10553683 - 财政年份:2021
- 资助金额:
$ 4.68万 - 项目类别:
相似国自然基金
围绕GLP1-Arginine-AGE/RAGE轴构建探针组学方法探索大柴胡汤异病同治的效应机制
- 批准号:81973577
- 批准年份:2019
- 资助金额:55.0 万元
- 项目类别:面上项目
相似海外基金
Targeting protein arginine methylation in the 9p21.3 loss tumor microenvironment
9p21.3 缺失肿瘤微环境中的靶向蛋白精氨酸甲基化
- 批准号:
489995 - 财政年份:2023
- 资助金额:
$ 4.68万 - 项目类别:
Operating Grants
The role of protein arginine methyl transferase PRMT1 on myelin development
蛋白精氨酸甲基转移酶PRMT1对髓磷脂发育的作用
- 批准号:
23K14287 - 财政年份:2023
- 资助金额:
$ 4.68万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Normalizing arginine metabolism with sepiaptein for immunostimulatory-shift ofHER2+ breast cancer
使用 Sepiaptein 使精氨酸代谢正常化以实现 HER2 乳腺癌的免疫刺激转变
- 批准号:
10776256 - 财政年份:2023
- 资助金额:
$ 4.68万 - 项目类别:
Effects of Arginine Depletion Combined with Platinum-Taxane Chemotherapy in Aggressive Variant Prostate Cancers (AVPC)
精氨酸消耗联合铂类紫杉烷化疗对侵袭性变异前列腺癌 (AVPC) 的影响
- 批准号:
10715329 - 财政年份:2023
- 资助金额:
$ 4.68万 - 项目类别:
Understanding resistance mechanisms to protein arginine methyltransransferase Inhibitors in Lymphoma
了解淋巴瘤对蛋白精氨酸甲基转移酶抑制剂的耐药机制
- 批准号:
10668754 - 财政年份:2023
- 资助金额:
$ 4.68万 - 项目类别:
Targeting protein arginine methylation in the 9p21.3 loss tumor microenvironment
9p21.3 缺失肿瘤微环境中的靶向蛋白精氨酸甲基化
- 批准号:
498862 - 财政年份:2023
- 资助金额:
$ 4.68万 - 项目类别:
Operating Grants
Physiological function of arginine signaling:macropinocytosisand tumor immune evasion
精氨酸信号的生理功能:巨胞饮作用与肿瘤免疫逃避
- 批准号:
23H03317 - 财政年份:2023
- 资助金额:
$ 4.68万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Regulation of androgen receptor signaling in prostate cancer by protein arginine methylation
通过蛋白质精氨酸甲基化调节前列腺癌中的雄激素受体信号传导
- 批准号:
10584689 - 财政年份:2023
- 资助金额:
$ 4.68万 - 项目类别:
Arginine methylation of the RNA helicase DDX5 in the regulation of RNA/DNA hybrids during the DNA damage response.
RNA 解旋酶 DDX5 的精氨酸甲基化在 DNA 损伤反应期间调节 RNA/DNA 杂交体中的作用。
- 批准号:
487619 - 财政年份:2023
- 资助金额:
$ 4.68万 - 项目类别:
Operating Grants
Regulation of and Target Recognition by Protein Arginine Methyltransferase 1 (PRMT1)
蛋白质精氨酸甲基转移酶 1 (PRMT1) 的调节和目标识别
- 批准号:
10653465 - 财政年份:2023
- 资助金额:
$ 4.68万 - 项目类别:














{{item.name}}会员




