Informing the Emergency Care of Septic Shock Patients: A Novel Application of Data-Driven Analytics
通知感染性休克患者的紧急护理:数据驱动分析的新应用
基本信息
- 批准号:10491283
- 负责人:
- 金额:$ 18.01万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-20 至 2025-11-30
- 项目状态:未结题
- 来源:
- 关键词:ADRB2 geneAccident and Emergency departmentAddressAreaBlack raceBlood PressureBlood specimenCharacteristicsClassificationClinicalClinical DataClinical ResearchConflict (Psychology)Critical CareCritical IllnessDataData ScienceData SetElectronic Health RecordEmergency CareEmergency Department patientEmergency MedicineEmergency SituationEnrollmentFundingGenesGeneticGenetic PolymorphismGenetic VariationGenotypeGoalsHeritabilityHeterogeneityHospitalsHourHumanHypotensionIV FluidInterventionK-Series Research Career ProgramsKnowledgeLeadLiquid substanceMedical GeneticsMentored Patient-Oriented Research Career Development AwardMentorsMentorshipMethodsModelingNational Institute of General Medical SciencesOutcomePatientsPerformancePersonsPharmaceutical PreparationsPharmacogeneticsPharmacogenomicsPhenotypePopulationPublic HealthRaceRefractoryResearchResearch PersonnelResuscitationSamplingScientistSepsisSeptic ShockShockSingle Nucleotide PolymorphismSocioeconomic StatusSubgroupSupervisionSystemic infectionTimeTrainingTraining and EducationUnderrepresented PopulationsUndifferentiatedVariantVasoconstrictor AgentsWorkadvanced analyticsanalytical methodbasebeta-adrenergic receptorbiobankbiomedical informaticsblack patientblood pressure elevationcareercareer developmentclinical decision supportclinically relevantcohortcostdeep learning modeldesignexperienceimplementation scienceimprovedinnovationinsightmortalitymultidisciplinarynovelpatient populationpatient responseprematureprospectiveracial disparityresearch studyresponserisk variantsafety netseptic patientsskillssocial factorssocial health determinantssupervised learningtranslational physiciantreatment responseunsupervised learning
项目摘要
PROJECT SUMMARY
Background: Septic shock is a commonly, costly, and deadly condition. There is increasing recognition that
septic shock patients vary significantly in terms of (1) clinical presentation, (2) response to treatments, and (3)
clinical outcomes. This patient-level heterogeneity may explain why optimal early septic shock management
remains poorly understood. Patients with septic shock are four times more likely to die than septic patients
without shock. Our preliminary data shows that Black patients have higher odds of mortality from septic shock
compared to White patients. Current studies do not characterize patient heterogeneity among septic shock
patients and do not explicate pharmacogenetic factors that may influence disparities in outcomes.
Objective: Insights from synergistic data types are necessary to provide a more complete understanding of
septic shock heterogeneity and hereditable factors that may influence vasopressor response and disparities in
outcomes. The overall objective of the proposed research is to characterize both phenotypic and genetic
aspects of heterogeneity in septic shock. This work is organized into two aims: (1) Identify Septic Shock
Phenotypes Using Advanced Analytic Methods and (2) Quantify Vasopressor Pharmacogenetic
Polymorphisms by Race and Vasopressor Response. Our overall hypothesis is that advanced analytic
methods applied to clinical and genetic data can identify defining features of septic shock heterogeneity that
are relevant to early septic shock management in the Emergency Department and disparities in outcomes.
Methods: (Aim 1) We will use a national dataset of septic patients with hypotension refractory to initial
Emergency Department fluid resuscitation and apply unsupervised machine learning clustering methods to
define clinically relevant phenotypes of early septic shock patients. We will analyze phenotypic variation in
clinical characteristics and outcomes. Then, we will develop a supervised model for phenotype classification.
(Aim 2) We will perform targeted pharmacogenomics of 100 samples balanced for race, 73 of which are part of
an existing research biobank of septic shock patients from our urban, safety-net hospital. We will enroll an
additional 27 patients to complete the sample. We will examine the presence of risk alleles of single nucleotide
polymorphisms for vasopressor-relevant genes by race. We will also examine the association between the
targeted genetic polymorphisms and shock reversal.
Career Development: During the proposed Career Development Award, I will work with my mentorship team
to build the skills necessary to achieve independence as a clinical researcher. Specifically, I will 1) receive
hands-on experience in the design and conduct of translational clinical research studies, 2) take didactic
coursework in data science, biomedical informatics, and implementation science, 3) receive training and
education in translational data science, clinical decision support, pharmacogenomics, and precision public
health, and 4) become a leader and an effective mentor in academic emergency medicine.
项目摘要
背景:感染性休克是一种常见、昂贵且致命的疾病。人们日益确认
感染性休克患者在(1)临床表现,(2)对治疗的反应,和(3)
临床结果。这种患者水平的异质性可以解释为什么最佳的早期感染性休克治疗
仍然知之甚少。感染性休克患者的死亡率是脓毒症患者的四倍
没有震惊。我们的初步数据显示,黑人患者感染性休克的死亡率较高,
与白色患者相比。目前的研究没有描述感染性休克患者的异质性
未阐明可能影响结局差异的药物遗传学因素。
目标:需要从协同数据类型中获得见解,以便更全面地了解
感染性休克异质性和遗传因素可能影响血管加压反应和差异,
结果。拟议研究的总体目标是表征表型和遗传
脓毒性休克的异质性方面。这项工作分为两个目标:(1)识别感染性休克
表型使用先进的分析方法和(2)量化血管加压素药物遗传学
按种族和血管加压素反应列出的多态性。我们的总体假设是,
应用于临床和遗传数据的方法可以识别败血性休克异质性的定义特征,
与急诊科的早期感染性休克管理和结局差异有关。
方法:(目的1)我们将使用一个全国性的低血压难治性脓毒症患者数据集,
急诊科液体复苏和应用无监督机器学习聚类方法,
定义早期感染性休克患者的临床相关表型。我们将分析表型变异,
临床特征和结果。然后,我们将开发一个有监督的表型分类模型。
(Aim 2)我们将对100个种族平衡的样本进行靶向药物基因组学研究,其中73个样本是
一个来自我们城市安全网医院的感染性休克患者的现有研究生物库。我们将招收一名
另外27名患者完成样本。我们将检查单核苷酸多态性的风险等位基因的存在,
不同种族血管加压素相关基因的多态性。我们还将研究
靶向遗传多态性和休克逆转。
职业发展:在建议的职业发展奖期间,我将与我的导师团队合作
建立必要的技能,以实现独立作为一个临床研究人员。具体来说,我将1)收到
在转化临床研究的设计和实施方面的实践经验,2)采取教学
数据科学,生物医学信息学和实施科学的课程,3)接受培训,
翻译数据科学,临床决策支持,药物基因组学和精密公共教育
健康,和4)成为一个领导者和一个有效的导师在学术急诊医学。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lauren Page Black其他文献
Lauren Page Black的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lauren Page Black', 18)}}的其他基金
Informing the Emergency Care of Septic Shock Patients: A Novel Application of Data-Driven Analytics
通知感染性休克患者的紧急护理:数据驱动分析的新应用
- 批准号:
10347895 - 财政年份:2021
- 资助金额:
$ 18.01万 - 项目类别:
Supplement to Informing the Emergency Care of Septic Shock Patients A Novel Application of Data-Driven Analytics
感染性休克患者紧急护理通知的补充数据驱动分析的新应用
- 批准号:
10890544 - 财政年份:2021
- 资助金额:
$ 18.01万 - 项目类别: