A Novel First-in-class 3D Printing Technology for Advanced Manufacturing of Complex Vaccine Formulations against Influenza and Emerging Infectious Diseases

一流的新型 3D 打印技术,用于先进制造针对流感和新发传染病的复杂疫苗配方

基本信息

  • 批准号:
    10491862
  • 负责人:
  • 金额:
    $ 49.87万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

PROJECT SUMMARY: Vaccination is known to be the most effective strategy to manage the spread and deleterious impact of various infectious diseases including the most recent emerging, coronavirus disease 2019, COVID-19. Recombinant protein subunit vaccines have demonstrated promising results for immunization against infectious diseases recently. These vaccines are manufactured through recombinant DNA technology in which the gene fragment that encodes the production of the recombinant protein is introduced to a host cell as an expression system. The genetically engineered cells can proliferate and produce a high amount of the protein of the target which can be separated and purified in the succeeding steps. The recent progress in genetic tool development to manipulate the microorganisms and utilization of mammalian cell lines in biopharmaceutical manufacturing have projected the global protein markets to reach $228.4 billion by the end of this year. However, this industry is still overloaded with processes that lack flexibility and process controls or integration needed for continuous or on demand production capacity. There is no biomanufacturing system that can produce recombinant proteins through a single-step continuous manufacturing process. So, due to the high demand for vaccines all over the world, there’s an immense need for highly efficient yet inexpensive technologies. Yeast expression systems such as Pichia pastoris (P. pastoris) can be used as an expression host cell which offers numerous advantages over traditional systems including high growth rate, easy genetic manipulation process, high yield protein expression, performing eukaryotic post-translational modifications, appropriate protein folding and protein secretion in the external medium and easy purification process.In this project we will utilise a novel Sprayed Multi Adsorbed-particle Reposing Technology (SMART 3D printing technique to produce biocompatible Pluronic (F127)-bisurethane methacrylate (F127-BUM) polymers based microcarrier immobilised with P. pastoris which can be used in large-scale fermentations for production of recombinant proteins. Our SMART technology meets the requirements for recombinant proteins manufacturing such as ease of scale-up, correct protein folding, and short post-production processing. It also has the potential to improve agility, flexibility, cost, and robustness in the manufacturing processes for complex protein-based biologics.Additionally, in contrast to other particulate fabrication techniques, SMART can incorporate live cells during the single-step microparticle formulation process. This technology can easily host further ancillary processes such as ultra-low temperature freezing print bed (-80oC or lower), fibre optic probes for the inline monitoring of critical product quality attributes (CQAs) such as viscosity, content uniformity and stability, making it accessible to industry in the near term with a robust control strategy. Our SMART will be implemented in a continuous setup to manufacture dry powder bioengineered P. pastoris encapsulated F127-BUM microcarriers to produce recombinant proteins for infectious diseases such as vaccines against Epstein-Barr virus (EBV) and influenza vaccines.
项目总结:疫苗接种是控制传播的最有效策略, 各种传染病的有害影响,包括最近出现的2019年冠状病毒病, 2019冠状病毒病。重组蛋白亚单位疫苗已被证明具有良好的免疫效果 最近传染病。这些疫苗是通过重组DNA技术生产的, 其中将编码重组蛋白产生的基因片段导入宿主细胞, 表达系统。基因工程细胞可以增殖并产生大量的蛋白质 可以在后续步骤中分离和纯化的目标。遗传工具的最新进展 微生物操作的发展和哺乳动物细胞系在生物制药中的应用 制造业预测,到今年年底,全球蛋白质市场将达到2284亿美元。然而,在这方面, 该行业仍然充斥着缺乏灵活性和过程控制或集成的过程, 连续或按需生产能力。没有一个生物制造系统可以生产 通过一步连续制造工艺生产重组蛋白质。因此,由于对 世界各地的疫苗,对高效而廉价的技术有着巨大的需求。酵母 表达系统如巴斯德毕赤酵母(P. pastoris)可用作表达宿主细胞, 许多优于传统系统的优点,包括高生长速率,容易的遗传操作过程, 高产量蛋白表达,进行真核翻译后修饰,适当的蛋白折叠 和蛋白质分泌的外部介质和容易纯化的过程。在这个项目中,我们将利用一个新的 喷雾多吸附颗粒再定位技术(SMART 3D打印技术, 固定有巴斯德毕赤酵母的基于普朗尼克(F127)-甲基丙烯酸双氨基甲酸酯(F127-BUM)聚合物的微载体 其可用于生产重组蛋白的大规模发酵。我们的SMART技术 满足重组蛋白生产的要求,例如易于放大,正确的蛋白折叠, 和短的后期制作处理。它还具有提高敏捷性、灵活性、成本和健壮性的潜力 在复杂的蛋白质基生物制剂的生产过程中。此外,与其他颗粒相比, 通过使用先进的制造技术,SMART可以在单步微粒配制过程中掺入活细胞 过程这项技术可以很容易地主持进一步的辅助过程,如超低温冷冻打印 床(-80 ℃或更低),光纤探头,用于在线监测关键产品质量属性(CQA), 如粘度、含量均匀性和稳定性,使其在短期内可用于工业上的稳健控制 战略我们的SMART将在一个连续的设置中实施,以生产干粉生物工程P。 pastoris囊封的F127-BUM微载体,以产生用于感染性疾病的重组蛋白, 针对EB病毒(EBV)的疫苗和流感疫苗。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mohammed Maniruzzaman其他文献

Mohammed Maniruzzaman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mohammed Maniruzzaman', 18)}}的其他基金

A Novel First-in-class 3D Printing Technology for Advanced Manufacturing of Complex Vaccine Formulations against Influenza and Emerging Infectious Diseases
一流的新型 3D 打印技术,用于先进制造针对流感和新发传染病的复杂疫苗配方
  • 批准号:
    10407414
  • 财政年份:
    2021
  • 资助金额:
    $ 49.87万
  • 项目类别:

相似国自然基金

“Lignin-first”策略下镁碱催化原生木质素定向氧化为小分子有机酸的机制研究
  • 批准号:
    21908075
  • 批准年份:
    2019
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
基于First Principles的光催化降解PPCPs同步脱氮体系构建及其电子分配机制研究
  • 批准号:
    51778175
  • 批准年份:
    2017
  • 资助金额:
    59.0 万元
  • 项目类别:
    面上项目

相似海外基金

Novel first-in-class Therapeutics for Rheumatoid Arthritis
类风湿关节炎的一流新疗法
  • 批准号:
    10696749
  • 财政年份:
    2023
  • 资助金额:
    $ 49.87万
  • 项目类别:
Development of first-in-class antagonists of the retinoid pathway as novel oral therapies for Type 2 Diabetes
开发类视黄醇途径的一流拮抗剂作为 2 型糖尿病的新型口服疗法
  • 批准号:
    10699637
  • 财政年份:
    2023
  • 资助金额:
    $ 49.87万
  • 项目类别:
Development of first-in-class antagonists of the retinoid pathway as novel oral immunotherapies for solid cancers
开发类视黄醇途径的一流拮抗剂作为实体癌的新型口服免疫疗法
  • 批准号:
    10604218
  • 财政年份:
    2023
  • 资助金额:
    $ 49.87万
  • 项目类别:
Developing First-in-Class Ligands for RFWD3, Utilizing a Novel Virtual Screening Method
利用新颖的虚拟筛选方法开发 RFWD3 的一流配体
  • 批准号:
    486447
  • 财政年份:
    2022
  • 资助金额:
    $ 49.87万
  • 项目类别:
    Studentship Programs
Discovery of First-in-class WDR5 PROTACs as a Novel Therapeutic Strategy for MLL-rearranged Leukemias
发现一流的 WDR5 PROTAC 作为 MLL 重排白血病的新型治疗策略
  • 批准号:
    10712396
  • 财政年份:
    2022
  • 资助金额:
    $ 49.87万
  • 项目类别:
Discovery of First-in-class WDR5 PROTACs as a Novel Therapeutic Strategy for MLL-rearranged Leukemias
发现一流的 WDR5 PROTAC 作为 MLL 重排白血病的新型治疗策略
  • 批准号:
    10387368
  • 财政年份:
    2022
  • 资助金额:
    $ 49.87万
  • 项目类别:
Discovery of First-in-class WDR5 PROTACs as a Novel Therapeutic Strategy for MLL-rearranged Leukemias
发现一流的 WDR5 PROTAC 作为 MLL 重排白血病的新型治疗策略
  • 批准号:
    10615610
  • 财政年份:
    2022
  • 资助金额:
    $ 49.87万
  • 项目类别:
Discovery of First-in-class WDR5 PROTACs as a Novel Therapeutic Strategy for MLL-rearranged Leukemias
发现一流的 WDR5 PROTAC 作为 MLL 重排白血病的新型治疗策略
  • 批准号:
    10745902
  • 财政年份:
    2022
  • 资助金额:
    $ 49.87万
  • 项目类别:
Drug Discovery for First-In-Class Myosin 10 Inhibitors as a Novel Target for Glioblastoma
首创肌球蛋白 10 抑制剂作为胶质母细胞瘤新靶标的药物发现
  • 批准号:
    10355649
  • 财政年份:
    2021
  • 资助金额:
    $ 49.87万
  • 项目类别:
A Novel First-in-class 3D Printing Technology for Advanced Manufacturing of Complex Vaccine Formulations against Influenza and Emerging Infectious Diseases
一流的新型 3D 打印技术,用于先进制造针对流感和新发传染病的复杂疫苗配方
  • 批准号:
    10407414
  • 财政年份:
    2021
  • 资助金额:
    $ 49.87万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了