EHR Phenotyping and Genomics of Opioid Addiction (Project 1)
阿片类药物成瘾的 EHR 表型分析和基因组学(项目 1)
基本信息
- 批准号:10493705
- 负责人:
- 金额:$ 47.36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-15 至 2027-05-31
- 项目状态:未结题
- 来源:
- 关键词:Acute PainAlgorithmsAnatomyAutopsyBioinformaticsBrainBrain imagingBrain regionClassificationClinicalClinical DataCodeComputerized Medical RecordDataData CollectionData SourcesDiagnosticDiseaseDocumentationDoseDrug usageElectronic Health RecordElectronic Medical Records and Genomics NetworkEmergency department visitEquationFaceFutureGene ExpressionGene Expression RegulationGenesGeneticGenetic studyGenomic medicineGenomicsGenotypeGoalsHealth systemHealthcare SystemsHeritabilityHeterogeneityHospitalizationHumanImageLinkMagnetic Resonance ImagingMeasurementMeasuresMediator of activation proteinMedicalMental disordersMethodsModelingNational Human Genome Research InstituteNeurobiologyOpiate AddictionOpioidOverdosePathway AnalysisPatient imagingPatientsPatternPersonsPharmaceutical PreparationsPhenotypePublishingReceptor GeneRecording of previous eventsRecordsResearchResourcesRiskRisk FactorsRodent ModelSamplingSeriesSiteStructureSubstance Use DisorderSubstance abuse problemUnited StatesValidationVariantalcohol misusebasebiobankbrain behaviorbrain magnetic resonance imagingbrain volumecase controlchronic paincigarette smokingclinical careclinical diagnosiscohortexperimental studyfollow-upgene networkgenetic architecturegenetic risk factorgenome wide association studyhigh dimensionalityimprovedin silicoinjury-related deathinsightlearning algorithmmorphometrymu opioid receptorsmultiple data typesmultiple omicsnovelnovel strategiesopioid abuseopioid epidemicopioid usepsychiatric comorbiditypsychogeneticsradiological imagingrare variantrisk predictionrisk variantsexstatisticssynergismtoolunsupervised learning
项目摘要
PROJECT SUMMARY/ABSTRACT
Drug overdose is the leading cause of injury-related death in the United States, and more than 2 million
people in the United States are struggling with some form of opioid addiction (OA). Notably, many patients
with OA are first introduced to opioids with a prescription for treatment of acute and chronic pain. Health care
systems are also significantly impacted by the opioid epidemic, with opioid-related hospitalizations increasing
by 150% and emergency department visits for opioid-related treatment doubling over the past 20 to 30
years. Thus, the use of prescription and clinical data from existing health system records offers a powerful
opportunity to improve our understanding of opioid use and abuse. Several health systems with longitudinal
data on millions of patients have also created biobanks to facilitate electronic health record (EHR)-based
genomic research and implementation of genomic medicine. In 2007, the National Human Genome
Research Institute organized the Electronic Medical Records and Genomics (eMERGE) network to develop
EHR algorithms for medical disorders, and this was expanded in 2018 to include psychiatric disorders
(PsycheMERGE). To date, however, EHR-based risk prediction and genomics have not been widely
leveraged for substance abuse research. Evidence suggests that substance use disorders are highly
heritable, although the underlying genetic risk factors remain unknown. In Project 1, we will leverage two
powerful health system biobanks to develop EHR opioid phenotypes using prescription records and clinical
diagnoses on more than 5 million people.
We aim to (1) validate and harmonize case and control phenotypes across multiple disorders, (2)
complete genome-wide association studies (GWAS) of opioid use phenotypes and the largest GWAS of OA
to date, and (3) examine the interaction between genomics and brain structure in opioid-using patients.
Successful completion of these aims will represent a major advance in demonstrating the utility of EHR
resources for furthering our understanding of OA and will build a multi-site opioid research network for
continued scientific discovery. Integrating Project 1 in the broader context of the Integrative Omics Center for
Accelerating Neurobiological Understanding of Opioid Addiction (ICAN) creates multi-omic synergy that
extends the impact of achieving these aims, linking them directly to differential gene regulation (Project 2)
and experimental follow-up of key findings in rodent models (Project 3), as well as gene networks
identification (Project 4). In this way, other ICAN Projects will enhance interpretation of Project 1 findings,
and Project 1 GWAS and imaging results will provide opportunities to extend the other ICAN Projects,
collectively achieving our goal to identify biologically meaningful drivers of OA.
项目摘要/摘要
药物过量是美国与伤害有关的主要原因,超过200万
美国的人们正在为某种形式的阿片类药物成瘾(OA)苦苦挣扎。值得注意的是,许多患者
首先将OA引入阿片类药物,并带有用于治疗急性和慢性疼痛的处方。卫生保健
阿片类药物的流行也会显着影响系统,阿片类药物相关的住院增加
在过去的20至30年中,急诊科进行了150%的急诊务访问,对阿片类药物相关的治疗增加了一倍
年。因此,从现有卫生系统记录中使用处方和临床数据提供了强大的
有机会提高我们对阿片类药物使用和滥用的理解。纵向的几个卫生系统
数百万患者的数据还创建了生物库,以促进电子健康记录(EHR)
基因组研究和基因组医学的实施。 2007年,国家人类基因组
研究机构组织了电子病历和基因组学(Emerge)网络来开发
EHR医疗疾病算法,并在2018年扩大了精神疾病
(Psychemerge)。但是,迄今为止,基于EHR的风险预测和基因组学尚未广泛
利用滥用药物研究。有证据表明,药物使用障碍很高
尽管基本的遗传危险因素仍然未知,但可遗传。在项目1中,我们将利用两个
强大的卫生系统生物库使用处方记录和临床
超过500万人的诊断。
我们的目标是(1)验证和协调多种疾病的病例和控制表型,(2)
阿片类药物使用表型和OA的最大GWA的完整全基因组关联研究(GWAS)
迄今为止,(3)检查阿片类药物的患者基因组学与大脑结构之间的相互作用。
这些目标的成功完成将代表证明EHR实用性的重大进步
用于进一步了解OA的资源,并将建立一个多站点的阿片类药物研究网络
持续的科学发现。集成项目1在综合法的更广泛背景下
加速对阿片类药物成瘾(ICAN)的神经生物学理解创造了多摩变协同作用
扩展了实现这些目标的影响,将它们直接与差异基因调节联系起来(项目2)
以及啮齿动物模型(项目3)和基因网络中关键发现的实验随访
识别(项目4)。这样,其他ICAN项目将增强对项目1的发现的解释,
项目1 GWAS和成像结果将提供机会扩展其他ICAN项目,
共同实现我们的目标,以确定OA的生物学有意义的驱动因素。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Vanessa Troiani其他文献
Vanessa Troiani的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
分布式非凸非光滑优化问题的凸松弛及高低阶加速算法研究
- 批准号:12371308
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
资源受限下集成学习算法设计与硬件实现研究
- 批准号:62372198
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于物理信息神经网络的电磁场快速算法研究
- 批准号:52377005
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
考虑桩-土-水耦合效应的饱和砂土变形与流动问题的SPH模型与高效算法研究
- 批准号:12302257
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向高维不平衡数据的分类集成算法研究
- 批准号:62306119
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Development of a regional anesthesia guidance system to increase patient access to opioid-sparing analgesia for hip fracture pain
开发区域麻醉引导系统,以增加患者获得髋部骨折疼痛的阿片类药物保留镇痛的机会
- 批准号:
10759550 - 财政年份:2023
- 资助金额:
$ 47.36万 - 项目类别:
Distortion Correction in Functional MRI with Deep Learning
利用深度学习进行功能 MRI 畸变校正
- 批准号:
10647991 - 财政年份:2023
- 资助金额:
$ 47.36万 - 项目类别:
Cortical information integration as a model for pain perception and behavior
皮质信息整合作为疼痛感知和行为的模型
- 批准号:
10205303 - 财政年份:2021
- 资助金额:
$ 47.36万 - 项目类别:
MEDSCAN: Mobile Enabled Diagnostics for Schistosomiasis Control Analytics
MEDSCAN:用于血吸虫病控制分析的移动诊断
- 批准号:
10279946 - 财政年份:2021
- 资助金额:
$ 47.36万 - 项目类别: