Single Cell Analysis and Immunogenetics
单细胞分析和免疫遗传学
基本信息
- 批准号:10493796
- 负责人:
- 金额:$ 30.82万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-15 至 2027-08-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAlgorithmsAntigensApplications GrantsBindingBronchiolitis ObliteransCell LineCell physiologyCellsCharacteristicsChronicClinicalCloningDNADNA analysisDNA sequencingDataData AnalysesDatabasesDiseaseDisease modelGenetic TranscriptionGoalsHematopoietic Stem Cell TransplantationImmuneImmune responseImmunogeneticsImmunogenomicsImmunologicsIndividualInstitutesLaboratoriesLungMetabolicMinor Histocompatibility AntigensMusOutcomePathogenesisPathway interactionsPatientsPeptidesPopulationPrincipal InvestigatorResistanceSamplingSingle Nucleotide PolymorphismSpecimenSyndromeT cell clonalityT cell responseT-Cell Immunologic SpecificityT-Cell ReceptorT-LymphocyteT-cell receptor repertoireTestingTherapeuticTissuesVariantalpha-beta T-Cell Receptorbeta Chain Antigen T Cell Receptorchronic graft versus host diseasecomputerized toolsexome sequencinggraft vs host diseaseimmunogenicityinsightmouse modelnew technologyresponsesingle cell analysissingle cell sequencingtooltranscriptome sequencingtreatment responsetumor-immune system interactions
项目摘要
Project Summary
The projects proposed for this grant application seek to characterize response and resistance to treatments for
chronic graft versus host disease (cGVHD) following hematopoietic stem cell transplantation (HCT). Core 1 will
support the single cell- and immunogenomics-related goals of these projects by focusing on applying the latest
experimental and computational tools to these studies. Bulk and single-cell transcriptome sequencing of immune
and lung cell populations (Aim 1) will be used to identify relevant pathways related to response to treatment of
cGVHD, to identify transcriptional aspects of the metabolic signature elucidated in mouse lung cGVHD models,
and to characterize the lung pathogenesis and immune response related to Bronchiolitis Obliterans Syndrome
(BOS) following HCT. Response of T cells to cGVHD treatments and to BOS will be further characterized by
TCR repertoire analysis using targeted bulk and single-cell sequencing to assess T cell clonality (Aim 2). Core
1 will analyze whole exome sequencing data from donor and recipient DNA to identify polymorphic differences
between donor and recipient, and use tissue expression databases to determine which of these variants are
expressed in lung. Recently developed sophisticated algorithms will be implemented to use this information to
predict personal HLA-binding peptides that comprise minor histocompatibility antigens (Aim 3). The paired
alpha/beta TCR chain single-cell sequence information will be used to reconstruct cell lines expressing individual
enriched TCRs (Aim 4) in order to functionally determine exactly which TCR interacts with which antigen. This
analysis will directly assess if mHAg-directed T cell responses contribute to clinical responses to therapy.
项目摘要
为这项赠款申请提出的项目旨在描述对治疗的反应和抗性,
造血干细胞移植(HCT)后的慢性移植物抗宿主病(cGVHD)。核心1将
支持这些项目的单细胞和免疫基因组学相关目标,重点应用最新的
实验和计算工具,这些研究。免疫组织化学的批量和单细胞转录组测序
和肺细胞群(目标1)将用于确定与治疗反应相关的相关途径,
cGVHD,以鉴定在小鼠肺cGVHD模型中阐明的代谢特征的转录方面,
并描述与闭塞性细支气管炎综合征相关的肺部发病机制和免疫反应
(BOS)HCT之后。T细胞对cGVHD治疗和对BOS的应答将进一步表征为:
使用靶向批量和单细胞测序进行TCR库分析以评估T细胞克隆性(目的2)。核心
1将分析供体和受体DNA的全外显子组测序数据,以确定多态性差异
在供体和受体之间,并使用组织表达数据库来确定这些变体中的哪一个是
在肺中表达。最近开发的复杂算法将被实现以使用该信息来
预测包含次要组织相容性抗原的个人HLA结合肽(Aim 3)。配对
α/β TCR链单细胞序列信息将用于重建表达个体TCR的细胞系。
富集的TCR(目的4),以便在功能上准确地确定哪个TCR与哪个抗原相互作用。这
分析将直接评估mHAg导向的T细胞应答是否有助于对治疗的临床应答。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kenneth James Livak其他文献
Kenneth James Livak的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kenneth James Livak', 18)}}的其他基金
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 30.82万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 30.82万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 30.82万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 30.82万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 30.82万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 30.82万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 30.82万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 30.82万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 30.82万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 30.82万 - 项目类别:
Continuing Grant














{{item.name}}会员




