RADX-TECH - LUMINOSTICS, INC. SMARTPHONE-BASED TEST FOR RAPID SARS-COV-2 ANTIGEN DETECTION FROM NASAL SWABS

RADX-TECH - LUMINOSTICS, INC. 基于智能手机的鼻拭子快速 SARS-COV-2 抗原检测测试

基本信息

  • 批准号:
    10505975
  • 负责人:
  • 金额:
    $ 2862.45万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-09-30 至 2021-09-29
  • 项目状态:
    已结题

项目摘要

Luminostics (San Jose, CA) is leveraging our de-risked and scale-ready smartphone-based diagnostics platform to develop a 15-minute smartphone-readout over-the-counter diagnostic self-test for the accurate detection of SARS-CoV-2 antigens from respiratory specimens (preferred sample type shallow nasal swab). We aim to obtain FDA EUA for this test by October 2020 and build a manufacturing capacity of >250k tests/week by November 2020. The assay & chemistry of this OTC test will be de-risked earlier through a a point-of-care version of the same product (EUA in July 2020).    Luminostics has developed a platform for high-sensitivity lateral flow immunoassays (LFAs) which is capable of orders-of-magnitude lower limits of detection (LoDs) compared to visually-read LFAs—and therefore higher clinical sensitivities approaching RT-PCR—using only a consumer smartphone’s optics, controlled by an app and paired with an inexpensive adapter, for readout. Our platform’s high sensitivity is enabled by the high detectability, with cheap optics, of our patented “glow-in-the-dark†persistent luminescent nanoparticles (“nanophosphorsâ€) in combination with highly optimized signal acquisition and processing algorithms. This means we can detect and quantify >100-fold lower levels of an analyte at the same per-test cost of a visual-readout LFA using the same affinity reagents, thereby enabling significant gains in clinical sensitivity. Our previous work has shown that this platform is ~90% sensitive and 99% specific for Chlamydia trachomatis detection compared to lab-based nucleic acid amplification testing methods in large clinical studies (N=437), enabling rapid, ultrasensitive, and portable diagnostics. We have also demonstrated superior anlaytical performance over existing rapid tests for other bacterial/viral pathogens.
Luminostics(加利福尼亚州圣何塞)正在利用我们的去风险且可规模化的基于智能手机的诊断平台开发一种 15 分钟智能手机读数非处方诊断自检,用于准确检测呼吸道样本(首选样本类型浅鼻拭子)中的 SARS-CoV-2 抗原。我们的目标是在 2020 年 10 月之前获得针对该测试的 FDA EUA,并在 2020 年 11 月之前建立每周超过 25 万次测试的生产能力。该 OTC 测试的化验和化学将通过同一产品的即时护理版本(2020 年 7 月的 EUA)提前降低风险。    Luminostics 开发了一个高灵敏度侧流免疫分析 (LFA) 平台,与目视读取的 LFA 相比,该平台能够将检测限 (LoD) 降低几个数量级,因此具有接近 RT-PCR 的更高临床灵敏度,仅使用消费者智能手机的光学器件(由应用程序控制并与廉价适配器配对)进行读数。我们的平台的高灵敏度是通过我们获得专利的“夜光”持久发光纳米颗粒(“纳米磷光体”)的高可检测性、廉价的光学器件以及高度优化的信号采集和处理算法实现的。这意味着我们可以使用相同的亲和试剂,以与视觉读出 LFA 相同的每次测试成本来检测和量化低水平 100 倍以上的分析物,从而显着提高临床灵敏度。我们之前的工作表明,与大型临床研究中基于实验室的核酸扩增测试方法 (N=437) 相比,该平台对沙眼衣原体检测的敏感性约为 90%,特异性为 99%,从而实现快速、超灵敏和便携式诊断。与其他细菌/病毒病原体的现有快速测试相比,我们还展示了卓越的分析性能。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

BALA RAJA其他文献

BALA RAJA的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 2862.45万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 2862.45万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 2862.45万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 2862.45万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 2862.45万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 2862.45万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 2862.45万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 2862.45万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 2862.45万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 2862.45万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了