Refining Predictive Models for Neglected and Emerging Infectious Diseases
完善被忽视和新出现的传染病的预测模型
基本信息
- 批准号:10494778
- 负责人:
- 金额:$ 37.75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-21 至 2027-07-31
- 项目状态:未结题
- 来源:
- 关键词:AdoptedCOVID-19CollectionCommunicable DiseasesDataData AnalysesData CollectionData SourcesDatabasesDevelopmentEmerging Communicable DiseasesEpidemicEpidemiologyEquilibriumFoundationsFutureHumanInterventionLearningMeasuresMethodologyModelingPerformancePlayResearchResearch ActivityRiskRoleSchistosomiasisTimeUpdateVaccinesValidationbaseclimate datacomputerized data processingcost effectivedata handlingdisorder controldisorder preventionepidemiologic dataepidemiology studyinterestmachine learning methodmethod developmentneglectoutcome predictionprediction algorithmpredictive modelingprognosticseasonal influenzastatistical and machine learningtoolwearable device
项目摘要
PROJECT SUMMARY
Predictive models play an essential role in disease prevention and control. Recent advances in scientific
research have allowed more thorough and in-depth data collection from epidemiological studies (e.g., GPS
data, climate data, wearable device data). However, due to the many variables collected and the relatively
short time frame for epidemiological data collection during some of the epidemics, missing information is
unavoidable, and subsequent updates of the database may be necessary. How to incorporate data with partial
information, i.e., with missingness, and predictors measured dynamically over time, into existing models to
perform more accurate and efficient predictions remains a challenge. Recently, the PI and his team have
developed predictive models for various purposes among several neglected and emerging infectious diseases,
including schistosomiasis, COVID-19, and human seasonal influenza. While conducting these studies, we
identified several practical issues prohibiting a broader implementation of the proposed models, such as
missing data and a lack of adaptive mechanisms based on dynamic inflows of predictors. Existing models
adopting the complete data analysis approach will significantly reduce the statistical power and cause potential
bias. Moreover, predictive models applied in epidemiological infectious disease studies often rely on historical
data collected up to a time point without taking into consideration of future data inputs. Meanwhile, the
development in statistical and machine learning methods laid the foundation for new dynamic predictive
models based on trajectory data, with recent progress in functional concurrent regression and incremental
learning. However, these methodological advances have been poorly integrated into field applications. Even in
recent COVID-19 research where advanced dynamic models have been developed, balancing the data flow
and prediction window has not been well studied. In addition, existing models often require a large amount of
variable collection, so a practical two-stage approach allowing limited data collection early on can be more
time- and cost-effective. In this MIRA proposal, we aim at refining predictive models for several neglected and
emerging infectious diseases. Specifically, three coherent projects with distinct research activities will be
pursued, which include: 1) refining hotspot prediction models for schistosomiasis interventions; 2) development
and validation of prognostic risk models for COVID-19 in the US, with methods development on missing data
handling and functional regression for dynamic prediction; 3) development and validation of a vaccine benefits
score for human seasonal influenza. The refined models are expected to be accompanied by new and more
general predictive algorithms involving missing data processing and dynamic prediction mechanisms to
enhance model performance and adaptability. The methodological development from this proposal will also
inform other epidemiological studies with similar challenges and have a broader long-term impact beyond the
scope of the infectious diseases covered in the currently proposed projects.
项目摘要
预测模型在疾病预防和控制中起着至关重要的作用。科学研究的最新进展
研究已经允许从流行病学研究中更彻底和深入地收集数据(例如,GPS
数据、气候数据、可穿戴设备数据)。然而,由于收集的变量很多,
在某些流行病期间,收集流行病学数据的时限很短,
这是不可避免的,随后可能需要更新数据库。如何将数据与部分
信息,即,随着时间的推移动态测量的预测因子,
进行更准确和有效的预测仍然是一个挑战。最近PI和他的团队
在几种被忽视的和新出现的传染病中开发了用于各种目的的预测模型,
包括血吸虫病、COVID-19和人类季节性流感。在进行这些研究时,我们
确定了妨碍更广泛地实施拟议模式的若干实际问题,例如
缺少数据和缺乏基于预测因素动态流入的适应机制。现有模型
采用完整的数据分析方法将大大降低统计功效,
bias.此外,流行病学传染病研究中应用的预测模型往往依赖于历史数据,
在不考虑未来数据输入的情况下,收集到某个时间点的数据。同时
统计和机器学习方法的发展为新的动态预测奠定了基础
模型的基础上的轨迹数据,最近的进展,功能并发回归和增量
学习然而,这些方法上的进步并没有很好地融入实地应用。即使在
最近的COVID-19研究开发了先进的动态模型,平衡了数据流
而预测窗口的研究还不够深入。此外,现有的模型通常需要大量的
变量收集,因此允许早期有限数据收集的实用两阶段方法可能更多
时间和成本效益。在这个MIRA提案中,我们的目标是改进几个被忽视的预测模型,
新出现的传染病。具体而言,将开展三个具有不同研究活动的连贯项目,
继续进行,包括:1)完善血吸虫病干预的热点预测模型; 2)开发
在美国对COVID-19的预后风险模型进行验证,并对缺失数据进行方法开发
动态预测的处理和函数回归; 3)疫苗效益的开发和验证
人类季节性流感评分。改进后的模型预计将伴随着新的和更多的
涉及丢失数据处理和动态预测机制的通用预测算法,
增强模型性能和适应性。本建议的方法学发展还将
为具有类似挑战的其他流行病学研究提供信息,并产生更广泛的长期影响,
目前拟议项目涵盖的传染病范围。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ye Shen其他文献
Ye Shen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ye Shen', 18)}}的其他基金
Refining Predictive Models for Neglected and Emerging Infectious Diseases
完善被忽视和新出现的传染病的预测模型
- 批准号:
10707496 - 财政年份:2022
- 资助金额:
$ 37.75万 - 项目类别:
相似国自然基金
CEACAM5调控Galectin-9介导的CD4+T细胞极化在COVID-19肠屏障损伤的作用机制研究
- 批准号:82370569
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
COVID-19疫情对我国儿童生长发育影响的异质性研究
- 批准号:42371429
- 批准年份:2023
- 资助金额:52.00 万元
- 项目类别:面上项目
传染病模型的稳态切换过程研究及其在治疗COVID-19中的应用
- 批准号:LQ23A010016
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
“湿漫膜原”视角下研究加味达原饮重塑COVID-19“免疫炎症稳态”的分子机制:TLR4介导IRF3/NF-κB通路串扰
- 批准号:82374291
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
COVID-19中线粒体囊泡抑制CD8+T细胞记忆分化的机制研究
- 批准号:82300018
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
COVID-19疫情爆发后武汉地区儿童副流感病毒3型的流行趋势和进化规律研究
- 批准号:n/a
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于 GDF15-IL6 信号轴探究扶正解毒方逆转血管内皮衰老治疗COVID-19的作用与机制
- 批准号:82374392
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
多维不平稳和长记忆性的复杂整值时间序列的建模及其在Covid-19研究中的应用
- 批准号:12301358
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
COVID-19疫苗同源、异源加强剂次细胞免疫与体液免疫效应的前瞻性队列研究
- 批准号:n/a
- 批准年份:2023
- 资助金额:10.0 万元
- 项目类别:省市级项目
基于人源细胞3D培养和精密肺切片技术探讨慢阻肺患者COVID-19易感机制研究
- 批准号:LY23H190003
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
WiFi data collection and processing for Covid-19 contact tracing
用于 Covid-19 接触者追踪的 WiFi 数据收集和处理
- 批准号:
564423-2021 - 财政年份:2021
- 资助金额:
$ 37.75万 - 项目类别:
University Undergraduate Student Research Awards
Leveraging Telehealth to Overcome Research Implementation and Data Collection Challenges in the Era of COVID-19
利用远程医疗克服 COVID-19 时代的研究实施和数据收集挑战
- 批准号:
10395789 - 财政年份:2021
- 资助金额:
$ 37.75万 - 项目类别:
RAPID: Collection and Archiving of Vital Data on COVID-19 Vaccine Distribution
RAPID:收集和归档有关 COVID-19 疫苗分发的重要数据
- 批准号:
2124825 - 财政年份:2021
- 资助金额:
$ 37.75万 - 项目类别:
Standard Grant
RAPID: Acoustic Communications and Sensing for COVID-19 Data Collection
RAPID:用于 COVID-19 数据收集的声学通信和传感
- 批准号:
2028547 - 财政年份:2020
- 资助金额:
$ 37.75万 - 项目类别:
Standard Grant
RAPID: Collaborative Research: Low-Cost, Non-invasive, Fast Sample Collection System for COVID-19 Viral Load Level Diagnosis: Point-of-Care and Environmental Testing
RAPID:协作研究:用于 COVID-19 病毒载量水平诊断的低成本、非侵入性快速样本采集系统:护理点和环境测试
- 批准号:
2032501 - 财政年份:2020
- 资助金额:
$ 37.75万 - 项目类别:
Standard Grant
RAPID: Collaborative Research: Low-Cost, Non-invasive, Fast Sample Collection System for COVID-19 Viral Load Level Diagnosis: Point-of-Care and Environmental Testing
RAPID:协作研究:用于 COVID-19 病毒载量水平诊断的低成本、非侵入性快速样本采集系统:护理点和环境测试
- 批准号:
2032500 - 财政年份:2020
- 资助金额:
$ 37.75万 - 项目类别:
Standard Grant
SURVEY COLLECTION AND ANALYSIS REGARDING COVID-19 DRIVEN DRINKING HABITS
关于 COVID-19 驱动的饮酒习惯的调查收集和分析
- 批准号:
10505355 - 财政年份:2020
- 资助金额:
$ 37.75万 - 项目类别:
RAPID/Collaborative Research: High-Frequency Data Collection for Human Mobility Prediction during COVID-19
RAPID/协作研究:用于 COVID-19 期间人类流动性预测的高频数据收集
- 批准号:
2027744 - 财政年份:2020
- 资助金额:
$ 37.75万 - 项目类别:
Standard Grant
RAPID: Collaborative Research: Low-Cost, Non-invasive, Fast Sample Collection System for COVID-19 Viral Load Level Diagnosis: Point-of-Care and Environmental Testing
RAPID:协作研究:用于 COVID-19 病毒载量水平诊断的低成本、非侵入性快速样本采集系统:护理点和环境测试
- 批准号:
2032533 - 财政年份:2020
- 资助金额:
$ 37.75万 - 项目类别:
Standard Grant
RAPID/Collaborative Research: High-Frequency Data Collection for Human Mobility Prediction during COVID-19
RAPID/协作研究:用于 COVID-19 期间人类流动性预测的高频数据收集
- 批准号:
2027708 - 财政年份:2020
- 资助金额:
$ 37.75万 - 项目类别:
Standard Grant