Efficient synthon-based modular screening of Giga-to-Terra-scale virtual libraries
基于合成子的高效模块化筛选千兆级到太级虚拟文库
基本信息
- 批准号:10504984
- 负责人:
- 金额:$ 41.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-26 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:AdoptionAffinityAlgorithmsBenchmarkingBindingCNR1 geneCNR2 geneChemicalsCloud ComputingCodeCollaborationsCommunitiesComputer AnalysisCyclic AMP-Dependent Protein KinasesDevelopmentDockingDrug Discovery GroupsEnsureG-Protein-Coupled ReceptorsGeometryGoalsGrowthInstitutionLeadLettersLibrariesLigandsLinuxLipid BindingMachine LearningNatureNucleotidesOrphanPharmaceutical PreparationsPhosphotransferasesPositioning AttributePropertyProteinsPythonsROCK1 geneReactionResearchResolutionSeedsStructureTechnologyTestingTimeValidationWorkanalogbasecannabinoid receptorcannabinoid receptor antagonistchemical synthesisclinically relevantcluster computingcombinatorialcomputational platformcomputing resourcescostcost effectivedrug candidatedrug discoverydrug qualityimprovedin siliconew technologynovelnovel strategiesopen sourceportabilityprospectiverapid detectionrapid growthreceptorscaffoldscale upscreeningtherapeutic targetvirtualvirtual libraryvirtual screening
项目摘要
ABSTRACT
The goal of our proposal is to develop a scalable platform for structure-based virtual screening of Giga- and Tera-
scale drug-like compound libraries, enabling streamlined discovery of high-quality drug candidates. Availability
of protein target structures and Giga-scale REAL Space libraries of virtual compounds (>10 billion) position
docking-based virtual screening as a key paradigm for drug discovery. However, the computational cost of Giga-
scale screening becomes a major bottleneck limiting further growth of the screening libraries. Recently, we have
introduced a highly scalable synthon-based technology, V-SYNTHES, which performs hierarchical structure-
based screening of REadily AvaiLable for synthesis (REAL) libraries (Sadybekov et al, Nature accepted).
By iteratively screening synthon-scaffold combinations, the V-SYNTHES approach makes possible rapid
detection of the best-scoring compounds in the Giga-scale chemical space while performing docking of only a
small fraction (~2 million) of the library. First tests of V-SYNTHES demonstrated strong enrichment in
computational benchmarks and significantly improved experimental hit rates on cannabinoid receptor CB2 and
ROCK1 kinase targets, while requiring 100 times less computational resources than standard virtual screenings.
Building upon these preliminary results, our proposal aims to: (1) Further develop a fully automated V-
SYNTHES algorithm, optimize its parameters and expand it to Tera-scale REAL libraries. (2) Apply and
experimentally validate the V-SYNTHES approach on a set of therapeutic targets of different classes, which
includes such challenging targets as nucleotide and lipid binding pockets, allosteric pockets, and orphan
receptors (3) Establish portability of the algorithm to an open-source docking platform to further facilitate V-
SYNTHES adoption in academic labs. The open-source algorithm will be distributed as a workflow for Linux
clusters and computing clouds. Successful completion of this project will establish V-SYNTHES as a robust
computational platform for structure-based ligand discovery in most classes of therapeutic targets, scaleable for
rapidly growing REAL modular libraries. Most importantly, it will help to make fast virtual screening of the
Giga-to-Tera-scale libraries broadly accessible for the whole research community with reasonable computational
resources.
摘要
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
VSEVOLOD KATRITCH其他文献
VSEVOLOD KATRITCH的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('VSEVOLOD KATRITCH', 18)}}的其他基金
Efficient synthon-based modular screening of Giga-to-Terra-scale virtual libraries
基于合成子的高效模块化筛选千兆级到太级虚拟文库
- 批准号:
10710170 - 财政年份:2022
- 资助金额:
$ 41.25万 - 项目类别:
Structure Function of CB1 Cannabinoid Receptor
CB1大麻素受体的结构功能
- 批准号:
10001488 - 财政年份:2016
- 资助金额:
$ 41.25万 - 项目类别:
Rational discovery of new DOR chemotypes to prevent addiction and overdose
合理发现新的 DOR 化学型以防止成瘾和过量
- 批准号:
9033099 - 财政年份:2015
- 资助金额:
$ 41.25万 - 项目类别:
Rational Anthrax Vaccine with Structural Epitopes on VLP
VLP 上具有结构表位的合理炭疽疫苗
- 批准号:
6555409 - 财政年份:2002
- 资助金额:
$ 41.25万 - 项目类别:
相似海外基金
Construction of affinity sensors using high-speed oscillation of nanomaterials
利用纳米材料高速振荡构建亲和传感器
- 批准号:
23H01982 - 财政年份:2023
- 资助金额:
$ 41.25万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Affinity evaluation for development of polymer nanocomposites with high thermal conductivity and interfacial molecular design
高导热率聚合物纳米复合材料开发和界面分子设计的亲和力评估
- 批准号:
23KJ0116 - 财政年份:2023
- 资助金额:
$ 41.25万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Platform for the High Throughput Generation and Validation of Affinity Reagents
用于高通量生成和亲和试剂验证的平台
- 批准号:
10598276 - 财政年份:2023
- 资助金额:
$ 41.25万 - 项目类别:
Development of High-Affinity and Selective Ligands as a Pharmacological Tool for the Dopamine D4 Receptor (D4R) Subtype Variants
开发高亲和力和选择性配体作为多巴胺 D4 受体 (D4R) 亚型变体的药理学工具
- 批准号:
10682794 - 财政年份:2023
- 资助金额:
$ 41.25万 - 项目类别:
Collaborative Research: DESIGN: Co-creation of affinity groups to facilitate diverse & inclusive ornithological societies
合作研究:设计:共同创建亲和团体以促进多元化
- 批准号:
2233343 - 财政年份:2023
- 资助金额:
$ 41.25万 - 项目类别:
Standard Grant
Collaborative Research: DESIGN: Co-creation of affinity groups to facilitate diverse & inclusive ornithological societies
合作研究:设计:共同创建亲和团体以促进多元化
- 批准号:
2233342 - 财政年份:2023
- 资助金额:
$ 41.25万 - 项目类别:
Standard Grant
Molecular mechanisms underlying high-affinity and isotype switched antibody responses
高亲和力和同种型转换抗体反应的分子机制
- 批准号:
479363 - 财政年份:2023
- 资助金额:
$ 41.25万 - 项目类别:
Operating Grants
Deconstructed T cell antigen recognition: Separation of affinity from bond lifetime
解构 T 细胞抗原识别:亲和力与键寿命的分离
- 批准号:
10681989 - 财政年份:2023
- 资助金额:
$ 41.25万 - 项目类别:
CAREER: Engineered Affinity-Based Biomaterials for Harnessing the Stem Cell Secretome
职业:基于亲和力的工程生物材料用于利用干细胞分泌组
- 批准号:
2237240 - 财政年份:2023
- 资助金额:
$ 41.25万 - 项目类别:
Continuing Grant
ADVANCE Partnership: Leveraging Intersectionality and Engineering Affinity groups in Industrial Engineering and Operations Research (LINEAGE)
ADVANCE 合作伙伴关系:利用工业工程和运筹学 (LINEAGE) 领域的交叉性和工程亲和力团体
- 批准号:
2305592 - 财政年份:2023
- 资助金额:
$ 41.25万 - 项目类别:
Continuing Grant














{{item.name}}会员




