Molecular mechanisms of lithium action on kinases
锂对激酶作用的分子机制
基本信息
- 批准号:10500972
- 负责人:
- 金额:$ 32.51万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-17 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAdvocateAffectAffinityBase PairingBenchmarkingBindingBinding ProteinsBiochemicalBioinformaticsBiologicalBiophysicsBipolar DisorderBloodCatalytic DomainChemicalsChemistryCyclic AMP-Dependent Protein KinasesDementiaDevelopmentDoseEnzymesEquilibriumExposure toFoundationsFree EnergyFutureGenesGlycogen Synthase Kinase 3GoalsGrowthHumanIn VitroIndividualIonsLithiumMapsMedicalMethodsMolecularMutagenesisMutationNatural SelectionsOutcomePathway interactionsPersonsPhenotypePhosphoric Monoester HydrolasesPhosphotransferasesPhysiologicalPhysiological ProcessesPredispositionProcessProtein KinaseProteinsProtocols documentationQuantum MechanicsReactionResistanceSamplingSignal PathwayStatistical BiasTherapeuticTimeVariantYeastsbiophysical techniquesdesigndietary trace elementdosageenzyme mechanismenzyme modelexperimental studyglycogen synthase kinase 3 betaimprovedin vivoinsightmolecular mechanicsmutation screeningpatient responseside effectsimulation
项目摘要
Summary/Abstract
Lithium is a first-line therapy for millions of people suffering from bipolar disorder, and is promising for
inhibiting development of dementia. Experiments show that a primary mode by which Li+ alters physiological
processes is by reducing activities of a surprisingly limited number of Mg2+-dependent phosphoryl-transferring
enzymes, including phosphomonoesterases and protein kinases. While the (Li-independent) catalytic
mechanisms of these enzymes are quite well-understood, much about the mechanistic details underlying their
Li-susceptibility remain unknown. Not surprisingly, it remains a major challenge to design enzyme variants that
are Li-resistant, and use them to disentangle signaling pathways associated with Li-susceptibilities of individual
enzymes. Here we focus on Li+'s action on kinases, and address the following problem central to alleviating the
issues raised above. Experiments on 71 human kinases show a wide range of Li-susceptibility — many are
unaffected and others are affected to varying degrees. But there is no explanation for these variations.
We address this gap in our understanding of Li-action by using state-of-the-art molecular mechanics
(MM), quantum mechanics (QM) and QM/MM simulations, as well as mutagenesis experiments guided by
bioinformatics and natural selection. Supported by experiments, we explore the overarching hypothesis that Li+
affects kinase activity by interacting directly with their catalytic sites. In Aim 1, simulations will examine how Li+
binds kinases, and how Li+ binding reduces kinase activity. Additionally, simulations will provide insights into
potential allosteric effects that regulate catalytic site activity. Our biochemical, cellular and in vivo experiments
in Aim2 are designed to (i) systematically examine effects of sequence differences between Li-sensitive and Li-
resistant kinases, with the goal of making a Li-sensitive enzyme, GSK-3, resistant to Li+; and (ii) discover key
residues that make certain kinases Li-sensitive. Experiments will also validate findings from simulations, and at
the same time, simulations will provide molecular insights to interpret results from mutational experiments.
Combined analysis of results from simulations and experiments will yield a Li-resistant GSK-3, which is
significant because it will, for the first time, enable us to disentangle GSK-3-driven physiological effects of Li+
from those of other Li-sensitive enzymes. This study will also provide a physical basis to explain observed
variations of Li-sensitivity across kinases, and these biophysical findings will serve as foundations for future
efforts to make other Li-sensitive kinases resistant to Li+, and map their specific phenotypes. We expect that
such efforts will improve understanding and predictions of patient responses to Li-treatments and dosages,
which remains a difficult task. This will both expedite therapy and avoid exposure to side effects. Finally, this
study will explore new advancements in modeling enzyme reactions and yield a validated polarizable force
field for describing Li+/Mg2+ interactions with proteins. This will enable future reliable studies of Li-action on
proteins not considered in this project and broaden exploration of the full range of Mg-binding proteins.
摘要/摘要
锂是数百万双相情感障碍患者的一线治疗药物,
抑制痴呆症的发展。实验表明,Li+改变生理的主要模式是:
方法是通过降低数量惊人有限的Mg 2+依赖性磷酸转移酶的活性,
酶,包括磷酸单酯酶和蛋白激酶。虽然(Li独立)催化剂
这些酶的机制是相当好理解的,很多关于其潜在的机制细节,
锂敏感性仍然未知。毫不奇怪,设计酶变体仍然是一个主要挑战,
是抗锂的,并使用它们来解开与个体的锂耐受性相关的信号通路。
内切酶在这里,我们专注于Li+对激酶的作用,并解决以下问题,以减轻
上面提到的问题。对71种人类激酶的实验显示了广泛的锂敏感性-许多是
其他人受到不同程度的影响。但是没有解释这些变化。
我们通过使用最先进的分子力学来解决我们对Li作用的理解中的这一差距
(MM),量子力学(QM)和QM/MM模拟,以及诱变实验指导下,
生物信息学和自然选择在实验的支持下,我们探讨了Li+
通过与其催化位点直接相互作用而影响激酶活性。在目标1中,模拟将研究Li+
结合激酶,以及Li+结合如何降低激酶活性。此外,模拟将提供洞察力,
调节催化位点活性的潜在变构效应。我们的生化、细胞和体内实验
在Aim 2中,设计用于(i)系统地检查Li-敏感性和Li-敏感性之间的序列差异的影响,
耐药激酶,目标是使Li敏感酶GSK-3对Li+具有抗性;以及(ii)发现关键的
使某些激酶对Li敏感的残基。实验还将验证模拟结果,
与此同时,模拟将提供分子见解来解释突变实验的结果。
对模拟和实验结果的综合分析将产生耐锂GSK-3,
重要的是,它将首次使我们能够解开GSK-3驱动的Li+生理效应
与其他锂敏感酶不同本研究也将为解释观测到的现象提供物理基础
不同的激酶对锂的敏感性不同,这些生物物理发现将为未来的研究奠定基础。
努力使其他Li敏感激酶对Li+具有抗性,并绘制其特异性表型。我们预计
这些努力将改善对Li治疗和剂量的患者反应的理解和预测,
这仍然是一项艰巨的任务。这将加快治疗并避免暴露于副作用。最后
这项研究将探索模拟酶反应的新进展,并产生一个有效的极化力
用于描述Li+/Mg 2+与蛋白质相互作用的字段。这将使未来可靠的研究锂的行动,
蛋白质没有考虑在这个项目和扩大探索的全方位镁结合蛋白。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
PETER S KLEIN其他文献
PETER S KLEIN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('PETER S KLEIN', 18)}}的其他基金
Molecular mechanisms of lithium action on kinases
锂对激酶作用的分子机制
- 批准号:
10705786 - 财政年份:2022
- 资助金额:
$ 32.51万 - 项目类别:
Targeting splicing in myelodysplasia through GSK-3
通过 GSK-3 靶向骨髓增生异常中的剪接
- 批准号:
10677505 - 财政年份:2022
- 资助金额:
$ 32.51万 - 项目类别:
Targeting Coronavirus through Nucleocapsid Phosphorylation
通过核衣壳磷酸化靶向冠状病毒
- 批准号:
10239590 - 财政年份:2021
- 资助金额:
$ 32.51万 - 项目类别:
The Penn-StARR Program for Research in Residency
Penn-StARR 住院医师研究计划
- 批准号:
10321397 - 财政年份:2018
- 资助金额:
$ 32.51万 - 项目类别:
Maintenance and expansion of long-term hematopoietic stem cells
长期造血干细胞的维持和扩增
- 批准号:
9767274 - 财政年份:2018
- 资助金额:
$ 32.51万 - 项目类别:
Maintenance and expansion of long-term hematopoietic stem cells
长期造血干细胞的维持和扩增
- 批准号:
10162647 - 财政年份:2018
- 资助金额:
$ 32.51万 - 项目类别:
An unexpected signaling output for the tumor suppressor APC
肿瘤抑制因子 APC 的意外信号输出
- 批准号:
9353834 - 财政年份:2016
- 资助金额:
$ 32.51万 - 项目类别:
An unexpected signaling output for the tumor suppressor APC
肿瘤抑制因子 APC 的意外信号输出
- 批准号:
9753259 - 财政年份:2016
- 资助金额:
$ 32.51万 - 项目类别:
An unexpected signaling output for the tumor suppressor APC
肿瘤抑制因子 APC 的意外信号输出
- 批准号:
9504746 - 财政年份:2016
- 资助金额:
$ 32.51万 - 项目类别:
Regulation of Neurogenesis and Behavior by GSK-3
GSK-3 对神经发生和行为的调节
- 批准号:
9001371 - 财政年份:2014
- 资助金额:
$ 32.51万 - 项目类别:
相似海外基金
Optimizing Health and Well-Being of Diverse Mothers with IDD and Their Infants During the Perinatal Period: A Virtual Advocate Tool for Data-Driven Supports
优化患有 IDD 的不同母亲及其婴儿在围产期的健康和福祉:用于数据驱动支持的虚拟倡导工具
- 批准号:
10760051 - 财政年份:2023
- 资助金额:
$ 32.51万 - 项目类别:
POSE: Phase II: Advocate Led Long-term Gameplan for Open OnDemand (ALL GOOD)
POSE:第二阶段:倡导者主导 Open OnDemand 的长期游戏计划(一切顺利)
- 批准号:
2303692 - 财政年份:2023
- 资助金额:
$ 32.51万 - 项目类别:
Standard Grant
Capitalising on our differences: A gathering to better understand and advocate for Early Career Health Researchers in Canada
利用我们的差异:更好地理解和倡导加拿大早期职业健康研究人员的聚会
- 批准号:
468168 - 财政年份:2022
- 资助金额:
$ 32.51万 - 项目类别:
Miscellaneous Programs
Addressing social adversity to improve outcomes among children undergoing liver transplant: the role for a health advocate on the transplant team
解决社会逆境以改善接受肝移植的儿童的预后:移植团队中健康倡导者的作用
- 批准号:
10427960 - 财政年份:2022
- 资助金额:
$ 32.51万 - 项目类别:
Evaluating an ACEs-Targeting Advocate Model of a Substance Use Prevention Program
评估药物使用预防计划的针对 ACE 的倡导者模型
- 批准号:
10577074 - 财政年份:2022
- 资助金额:
$ 32.51万 - 项目类别:
The Art of Creation: Using Art-Based Knowledge Translation to Promote and Advocate for a Healthy Start to Life
创造的艺术:利用基于艺术的知识转化来促进和倡导健康的生命开端
- 批准号:
486588 - 财政年份:2022
- 资助金额:
$ 32.51万 - 项目类别:
Studentship Programs
When I am Old, I shall Wear Purple Nail Varnish: Utilising performance art to construct queer spaces that celebrate and advocate for ageing bodies
当我老了,我要涂紫色指甲油:利用行为艺术构建酷儿空间,庆祝和倡导衰老的身体
- 批准号:
2760091 - 财政年份:2022
- 资助金额:
$ 32.51万 - 项目类别:
Studentship
Addressing social adversity to improve outcomes among children undergoing liver transplant: the role for a health advocate on the transplant team
解决社会逆境以改善接受肝移植的儿童的预后:移植团队中健康倡导者的作用
- 批准号:
10621188 - 财政年份:2022
- 资助金额:
$ 32.51万 - 项目类别:
Techquity by FAITH!: A cluster randomized controlled trial to assess the efficacy of a community-informed, cardiovascular health promotion mobile hlth intervention with digital health advocate support
Techquity by FAITH!:一项整群随机对照试验,旨在评估社区知情、心血管健康促进移动 hlth 干预措施在数字健康倡导者支持下的效果
- 批准号:
10891016 - 财政年份:2021
- 资助金额:
$ 32.51万 - 项目类别:
CMV responses in autoantibody positive subjects advocate antiviral treatments for prevention of T1D
自身抗体阳性受试者的 CMV 反应主张抗病毒治疗以预防 T1D
- 批准号:
10230365 - 财政年份:2020
- 资助金额:
$ 32.51万 - 项目类别: