Physics-based characterization of functionally relevant protein conformational dynamics

功能相关蛋白质构象动力学的基于物理的表征

基本信息

  • 批准号:
    10501664
  • 负责人:
  • 金额:
    $ 22.16万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-15 至 2027-08-31
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY With recent advances in structural biology and supercomputing technology, all-atom molecular dynamics (MD) simulation technique has gained momentum as a prominent tool for the study of protein structural dynamics. Brute-force MD, however, is not capable of adequately sampling most functionally relevant biomolecular processes such as large-scale protein conformational changes. Various approaches have been developed over the last three decades to address the “timescale gap” that hinders the use of MD in real- world applications. Free energy calculation methods, enhanced sampling techniques, and path-finding algorithms are examples of umbrella terms that describe many of these methods. This project specifically aims at employing, tailoring, and fine-tuning state-of-the-art enhanced sampling and path-finding algorithms to address important biological and biomedical questions. The overall aim of this project is to develop and employ robust and practical sampling and analysis protocols to study functionally relevant conformational changes of various proteins from fibroblast growth factor to coronavirus spike protein. Our proposed methodological framework specifically takes advantage of (1) robust theoretical formalisms rooted in nonequilibrium statistical mechanics and differential geometry; (2) system-specific enhanced sampling protocols that are tunable for the specific problem at hand; and (3) and integrative and synergistic approach to experimental (specifically smFRET) and computational (specifically MD) techniques. Some of the systems proposed to be studied here include proton-coupled oligopeptide transporters, influenza hemagglutinin, ATP-binding transporters, coronavirus spike proteins, mechanosensitive channel of large conductance, membrane insertase YidC, serotonin transporter, and fibroblast growth factor (FGF) protein. The common theme in all of these projects is the large-scale conformational changes involved in the function of these proteins. The successful use of the methodology proposed in this project will allow the characterization of these conformational changes at the molecular level and pave the groundwork for the routine application of state-of-the-art enhanced sampling techniques in the study of real world biological problems.
项目摘要 随着结构生物学和超级计算技术的发展,全原子分子动力学 (MD)模拟技术作为研究蛋白质结构的重要工具, 动力学然而,蛮力MD不能充分采样大多数功能相关的 生物分子过程,如大规模的蛋白质构象变化。了各种方法 在过去的三十年里,为了解决阻碍MD在真实的中使用的“时间尺度差距”, 世界应用。自由能计算方法,增强的采样技术和路径查找 算法是描述这些方法中的许多方法的总括术语的示例。这个项目具体来说 旨在采用、裁剪和微调最先进的增强采样和路径查找 解决重要的生物学和生物医学问题的算法。该项目的总体目标是 开发和采用强大和实用的采样和分析协议,以研究功能相关的 从成纤维细胞生长因子到冠状病毒刺突蛋白的各种蛋白质的构象变化。我们 建议的方法框架特别利用(1)强大的理论形式主义 植根于非平衡统计力学和微分几何;(2)系统特定增强 采样协议是可调的具体问题在手;和(3)和综合和协同 实验(特别是smFRET)和计算(特别是MD)技术的方法。一些 本文拟研究的系统包括质子偶联寡肽转运蛋白、流感病毒 血凝素,ATP结合转运蛋白,冠状病毒刺突蛋白,大细胞机械敏感通道 电导、膜插入酶YidC、5-羟色胺转运蛋白和成纤维细胞生长因子(FGF)蛋白。 所有这些项目的共同主题是, 这些蛋白质的功能。成功使用本项目中提出的方法将使 在分子水平上表征这些构象变化,并为 在真实的世界生物研究中常规应用最先进的增强取样技术 问题

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mahmoud Moradi其他文献

Mahmoud Moradi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mahmoud Moradi', 18)}}的其他基金

Physics-based characterization of functionally relevant protein conformational dynamics
功能相关蛋白质构象动力学的基于物理的表征
  • 批准号:
    10700963
  • 财政年份:
    2022
  • 资助金额:
    $ 22.16万
  • 项目类别:
Molecular characterization of the influenza hemagglutinin mediated membrane fusion
流感血凝素介导的膜融合的分子特征
  • 批准号:
    10047161
  • 财政年份:
    2020
  • 资助金额:
    $ 22.16万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 22.16万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 22.16万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 22.16万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 22.16万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 22.16万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 22.16万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 22.16万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 22.16万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 22.16万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 22.16万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了