Dissecting multidrug resistance pathways in Trypanosomatids
剖析锥虫的多重耐药途径
基本信息
- 批准号:10501243
- 负责人:
- 金额:$ 40.38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-05 至 2027-06-30
- 项目状态:未结题
- 来源:
- 关键词:AfricanAfrican TrypanosomiasisAntiparasitic AgentsBenznidazoleBioinformaticsBiological ProcessBiosensorBlood CirculationCell CycleCell DeathCell LineCell SurvivalCellsClinicalComplexCytologyCytosolDNA DamageDNA biosynthesisDataDefectDevelopmentDiseaseDrug DesignDrug TargetingDrug resistanceEflornithineEncephalopathiesEnsureFutureGenesGeneticGenetic ScreeningGenome StabilityHumanIndividualInfectionIntravenousKnowledgeLeadLegal patentLeishmaniaLibrariesLinkLiteratureMeasurableMeasuresMelarsoprolMembrane PotentialsMetabolismMethodsMitochondriaMitochondrial ProteinsMolecular TargetMulti-Drug ResistanceNifurtimoxOralOutcomeOxidation-ReductionParasitesParasitic infectionPathway interactionsPentamidinePersonsPharmaceutical PreparationsPharmacotherapyPhenotypePovertyProcessProteinsPublishingQuality of lifeRNA InterferenceResearchResistanceResourcesScreening procedureSpliced Leader RNAStressStructureSuraminSurvivorsTestingTimeToxic effectTreatment ProtocolsTrypanocidal AgentsTrypanosomaTrypanosoma brucei bruceiTrypanosoma cruziValidationbasecell killingclinically relevantconditional knockoutcytotoxiccytotoxicitydrug developmentdrug mechanismfexinidazolegain of functionimprovedinsightknock-downnew therapeutic targetnext generationnovelnovel therapeuticsoverexpressionprogramsresistance generesistance mechanismscreeningstress managementsuccesstherapeutic developmenttool
项目摘要
PROJECT SUMMARY
Precisely how anti-trypanosomatid drugs kill parasites remains largely unknown. Trypanosomatid
infections, in the form of African trypanosomes, American trypanosomes, and Leishmania spp., directly
contribute to disease and poverty of over 1 billion people. Thus, gaps in knowledge have a significant human
impact. The well-established treatments nifurtimox, eflornithine, benznidazole, pentamidine, suramin, and
melarsoprol all suffer from complex treatment regimens, host toxicity, and burgeoning drug resistance. The high
host toxicity of melarsoprol (encephalopathy in ¼ of patents) made development of new drugs an imperative,
which has been answered by NECT (nifurtimox-eflornithine combination, intravenous) and fexinidazole (oral)
therapies. Despite this progress, mechanisms of cell death and drug resistance are unknown for fexinidazole
and other significant drugs. The ORFeome-based Trypanosoma brucei Gain-of-Function Library is the state-of-
the-art-tool for identification of both direct drug targets and mechanisms of drug resistance in trypanosomatids.
Discoveries from a published melarsoprol Gain-of-Function screen identified novel aspects of resistance
(including mitochondrial proteins). Unpublished data from a fexinidazole genetic screen demonstrated that drug
resistant survivors arise from induced expression of a clearly identifiable set of genes, which remain to be
elucidated. Multiple trypanocidal drugs converge on the same set of cytology phenotypes, suggesting shared
pathways to cell death. Based on genetic screening data and cytology-based phenotypes, this proposal will test
the central hypothesis that anti-trypanosomatid drugs share common mechanisms of cell killing and utilize
pathways that can promote multi- and pan-resistance against widely used therapies. In AIM 1, all clinically
relevant anti-trypanosomatid drugs (nifurtimox, eflornithine, benznidazole, pentamidine, suramin, and
fexinidazole) will undergo GoF genetic screening and validation to identify a set of genes that promote multi- and
pan-drug resistance. Multiple drugs converge on trypanosomatid redox and mitochondrial functions. AIM 2 will
use genetically encoded fluorescent biosensors to test the working hypothesis that anti-trypanosomatid drug
treatments perturb redox metabolism and ROS stress management in the cytosol and mitochondrion, filling a
gap in our understanding of drug-induced redox stress. Drug cytotoxicity in T. brucei is associated with a set of
established phenotypes, AIM 3 will determine how multi-resistance genes contribute to cell death phenotypes
including: cell cycle, DNA damage, and loss of mitochondrial functions. The proposed research is of high
significance because it will link trypanocidal phenotypes with their associated genes and genetic pathways for
the first time. Genes whose expression promotes multidrug resistance will elucidate the pathways that lead to
cell death in these parasites. Discoveries arising from these studies will illuminate mechanisms of cell death for
all existing trypanosomatid therapies and identify targets for improved drug design. This proposal will enable
better informed choices in anti-parasitic compound development and screening for years to come.
项目总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Galadriel Astra Hovel-Miner其他文献
Galadriel Astra Hovel-Miner的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Galadriel Astra Hovel-Miner', 18)}}的其他基金
Fexinidazole survival genes implicate a novel redox-based mechanism in drug resistance
非昔硝唑存活基因暗示一种新的基于氧化还原的耐药机制
- 批准号:
10573978 - 财政年份:2023
- 资助金额:
$ 40.38万 - 项目类别:
Dissecting multidrug resistance pathways in Trypanosomatids
剖析锥虫的多重耐药途径
- 批准号:
10659243 - 财政年份:2022
- 资助金额:
$ 40.38万 - 项目类别:
相似海外基金
The catalytic core of the proteasome as a drug target to treat Human African Trypanosomiasis
蛋白酶体的催化核心作为治疗非洲人类锥虫病的药物靶点
- 批准号:
10511408 - 财政年份:2022
- 资助金额:
$ 40.38万 - 项目类别:
A One Health approach to investigating the ecology of East African trypanosomiasis in Malawian wildlife
调查马拉维野生动物中东非锥虫病生态学的“同一个健康”方法
- 批准号:
476178 - 财政年份:2022
- 资助金额:
$ 40.38万 - 项目类别:
Studentship Programs
The catalytic core of the proteasome as a drug target to treat Human African Trypanosomiasis
蛋白酶体的催化核心作为治疗非洲人类锥虫病的药物靶点
- 批准号:
10677879 - 财政年份:2022
- 资助金额:
$ 40.38万 - 项目类别:
Multi-target approach to rational design of novel therapeutics for human African trypanosomiasis
多目标方法合理设计非洲人类锥虫病新疗法
- 批准号:
10466942 - 财政年份:2021
- 资助金额:
$ 40.38万 - 项目类别:
Multi-target approach to rational design of novel therapeutics for human African trypanosomiasis
多目标方法合理设计非洲人类锥虫病新疗法
- 批准号:
10296873 - 财政年份:2021
- 资助金额:
$ 40.38万 - 项目类别:
Multi-target approach to rational design of novel therapeutics for human African trypanosomiasis
多目标方法合理设计非洲人类锥虫病新疗法
- 批准号:
10706306 - 财政年份:2021
- 资助金额:
$ 40.38万 - 项目类别:
Reducing and replacing the animal cost of functional genetics in African trypanosomiasis
减少和替代非洲锥虫病功能遗传学的动物成本
- 批准号:
NC/W001144/1 - 财政年份:2021
- 资助金额:
$ 40.38万 - 项目类别:
Research Grant
Development of new drug for African trypanosomiasis based on elucidation of the mechanism of antiprotozoal action by ribavirin.
基于利巴韦林抗原虫作用机制的阐明,开发治疗非洲锥虫病的新药。
- 批准号:
21K18230 - 财政年份:2021
- 资助金额:
$ 40.38万 - 项目类别:
Grant-in-Aid for Challenging Research (Pioneering)
Development of a novel control measure for African trypanosomiasis based on the blocking of lifecycle progression
基于生命周期进展阻断的非洲锥虫病新型控制措施的开发
- 批准号:
20K07467 - 财政年份:2020
- 资助金额:
$ 40.38万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Drug-diagnostic co-development in Tropical Medicine, combating Human African Trypanosomiasis
热带医学药物诊断联合开发,抗击非洲人类锥虫病
- 批准号:
18KK0454 - 财政年份:2019
- 资助金额:
$ 40.38万 - 项目类别:
Fund for the Promotion of Joint International Research (Fostering Joint International Research (A))