Neural Network Approach to Estimate Fetal Weight in the Late Third Trimester of Pregnancy
神经网络方法估计妊娠晚期胎儿体重
基本信息
- 批准号:10507172
- 负责人:
- 金额:$ 15.87万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-17 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:37 weeks gestationAbdomenAgreementAlgorithmic AnalysisAlgorithmsAnatomyAwardBiometryBirthBirth CertificatesBirth WeightBlindedBody mass indexBreastCaliberCardiologyCesarean sectionCharacteristicsClinicalClinical assessmentsDataData ScienceDecision MakingDevelopmentDiagnosisDiscipline of NursingDiscipline of obstetricsEnvironmentEyeFemurFetal WeightFibrinogenFingersFutureGestational AgeGoalsGrowthHead circumferenceHeightHospitalsImageImage AnalysisInfantInfant DevelopmentInformation SystemsInstitutesInterdisciplinary StudyInterventionLeadLearningLengthManualsMaternal-fetal medicineMeasurementMedicineMentored Research Scientist Development AwardMentorsMentorshipMethodsNational Institute of Nursing ResearchNeural Network SimulationNewborn InfantNurse MidwivesNursing AssessmentObservational StudyOperative Surgical ProceduresOverweightPalpationParticipantPatientsPatternPerinatalPersonal SatisfactionPhysical ExaminationPhysiciansPoliciesPractice GuidelinesPregnancyPregnant WomenPrenatal careProviderRadiology SpecialtyResearchResearch PersonnelRoleSchool NursingSignal TransductionSpecificityTechnologyThird Pregnancy TrimesterTimeTrainingTranslationsUltrasonographyUnited StatesUniversitiesWeightWomanWomen&aposs Healthantenatalbasecareercareer developmentclinical careclinical decision-makingcomputer sciencecomputing resourcesconvolutional neural networkeffectiveness testingfetalimprovedmultimodalityneonateneural networkneural network algorithmneurodevelopmentpolicy implicationprospectiveresearch studyskills trainingsuccesstooltumorultrasound
项目摘要
Project Summary and Abstract
Fetal weight estimation, or the assessment of antenatal fetal weight for the purposes of growth tracking and
labor planning, is a critical component of safe prenatal care. Estimations currently rely on ultrasound-derived
measurements of specific fetal planes to indirectly assess growth and wellbeing. The standard fetal biometric
measurements for the estimation of fetal weight (biparietal diameter, head circumference, abdominal
circumference and femur length) are poorly correlated to actual fetal weight, defined as the measurement of
newborn weight in grams at birth. For newborns who are above 4,000 grams at birth, current error estimates of
fetal weight in the late-third trimester of pregnancy are only accurate approximately 40% of the time. By no
longer relying on fetal biometric measurements, data science approaches have the potential to estimate fetal
weight with lower bias and errors compared to standard regression methods. To date, no studies have used
ultrasound images, not just the fetal measurements, as input into a neural network approach to estimate fetal
weight. The overarching goal of this proposal is to develop the skills and training necessary to lead the
advancement of data science for use in clinical assessment during pregnancy. Using existing ultrasound
imaging and birth certificate data (n=17,478 patients) from the University of Rochester (UR) Medicine Hospitals
and the Finger Lakes Regional Perinatal/Obstetrics Data System (PDS), and n= 310 patients in the R01 study,
Understanding Pregnancy Signals and Infant Development (UPSIDE: R01HD083369), the specific aims are: 1)
To determine the maternal (i.e., body mass index) and fetal factors (i.e., growth measurements) that increase
the discordance between the estimation of fetal weight by the Hadlock formula and actual birth weight of
neonates using birth certificate data from the PDS, 2) To evaluate the accuracy of a CNN algorithm on
ultrasound images in the third trimester to estimate fetal weight compared to the Hadlock formula, and 3) To
test the effectiveness CNN algorithm on new ultrasound images from the UPSIDE study. This proposal will
leverage the expertise of Dr. Caitlin Dreisbach’s mentorship team, computational resources, and the
exceptional research environment at the UR School of Nursing, Goergen Institute for Data Science, and the
Rochester Institute of Technology. Results from this study have the potential to change practice and improve
clinical assessments during the late third trimester of pregnancy. The research study and mentored training
included in this award allows Dr. Dreisbach to establish her long-term career goal of becoming an independent
investigator with expertise in the translation of data science to obstetric clinical care.
项目摘要及摘要
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Caitlin Dreisbach其他文献
Caitlin Dreisbach的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Caitlin Dreisbach', 18)}}的其他基金
Neural Network Approach to Estimate Fetal Weight in the Late Third Trimester of Pregnancy
神经网络方法估计妊娠晚期胎儿体重
- 批准号:
10685346 - 财政年份:2022
- 资助金额:
$ 15.87万 - 项目类别:
相似海外基金
Contributions of cell behaviours to dorsal closure in Drosophila abdomen
细胞行为对果蝇腹部背侧闭合的贡献
- 批准号:
2745747 - 财政年份:2022
- 资助金额:
$ 15.87万 - 项目类别:
Studentship
Using the GI Tract as a Window to the Autonomic Nervous System in the Thorax and in the Abdomen
使用胃肠道作为胸部和腹部自主神经系统的窗口
- 批准号:
10008166 - 财政年份:2018
- 资助金额:
$ 15.87万 - 项目类别:
Development of a free-breathing dynamic contrast-enhanced (DCE)-MRI technique for the abdomen using a machine learning approach
使用机器学习方法开发腹部自由呼吸动态对比增强 (DCE)-MRI 技术
- 批准号:
18K18364 - 财政年份:2018
- 资助金额:
$ 15.87万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Combined motion-compensated and super-resolution image reconstruction to improve magnetic resonance imaging of the upper abdomen
结合运动补偿和超分辨率图像重建来改善上腹部的磁共振成像
- 批准号:
1922800 - 财政年份:2017
- 资助金额:
$ 15.87万 - 项目类别:
Studentship
Optimising patient specific treatment plans for ultrasound ablative therapies in the abdomen (OptimUS)
优化腹部超声消融治疗的患者特定治疗计划 (OptimUS)
- 批准号:
EP/P013309/1 - 财政年份:2017
- 资助金额:
$ 15.87万 - 项目类别:
Research Grant
Optimising patient specific treatment plans for ultrasound ablative therapies in the abdomen (OptimUS)
优化腹部超声消融治疗的患者特定治疗计划 (OptimUS)
- 批准号:
EP/P012434/1 - 财政年份:2017
- 资助金额:
$ 15.87万 - 项目类别:
Research Grant
Relationship between touching the fetus via the abdomen of pregnant women and fetal attachment based on changes in oxytocin levels
基于催产素水平变化的孕妇腹部触摸胎儿与胎儿附着的关系
- 批准号:
16K12096 - 财政年份:2016
- 资助金额:
$ 15.87万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Design Research of Healthcare System based on the Suppleness of Upper Abdomen
基于上腹部柔软度的保健系统设计研究
- 批准号:
16K00715 - 财政年份:2016
- 资助金额:
$ 15.87万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Technical Development of Diffusion Tensor Magnetic Resonance Imaging in the Human Abdomen
人体腹部弥散张量磁共振成像技术进展
- 批准号:
453832-2014 - 财政年份:2015
- 资助金额:
$ 15.87万 - 项目类别:
Postdoctoral Fellowships
Technical Development of Diffusion Tensor Magnetic Resonance Imaging in the Human Abdomen
人体腹部弥散张量磁共振成像技术进展
- 批准号:
453832-2014 - 财政年份:2014
- 资助金额:
$ 15.87万 - 项目类别:
Postdoctoral Fellowships














{{item.name}}会员




