Optimizing Clinical Decision Support Alerts Using Explainable Artificial Intelligence (XAI)
使用可解释的人工智能 (XAI) 优化临床决策支持警报
基本信息
- 批准号:10505752
- 负责人:
- 金额:$ 8.96万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-10 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:Academic Medical CentersAccountingAddressAffectAreaArtificial IntelligenceBehaviorBlindedBody Weight decreasedCardiopulmonary ResuscitationCholesterolClinicalClinical Decision Support SystemsComplexConsensusDataDelphi StudyDevelopmentDevelopment PlansElectronic Health RecordEvaluationFast Healthcare Interoperability ResourcesFatigueFederal GovernmentFeedbackFire - disastersGoalsHealth systemHealthcareHealthcare SystemsInformaticsIntelligenceLeadLearningLogicMachine LearningManualsMapsMentorsMethodsModelingOutcomePatientsPerceptionPerformancePhaseProcessQuality of CareResearchResearch PersonnelScienceServicesStandardizationSuggestionTaxonomyTechniquesTimeTrainingWomanWorkbaseburnoutcareercareer developmentclinical decision supportdesensitizationdesignexperiencehealth care qualityhospice environmentimplementation scienceimprovedinnovationmenmultidisciplinaryneglectpatient safetypoint of carepredictive modelingpublic health relevancerecruitresponsescreeningskillsstandardized caresupport toolstooltrustworthiness
项目摘要
PROJECT SUMMARY
Over the past decade, the federal government has spent more than $34 billion on the meaningful use of elec-
tronic health records (EHRs). However, the acceptance rate for clinical decision support (CDS) alerts, a critical
component of EHRs, is less than 10%. The large number of low relevance alerts (e.g. a weight loss alert during
a cardiac resuscitation) not only increases the burden on clinicians, but can lead to the onset of alert fatigue,
resulting in the neglect of important alerts and posing a serious threat to patient safety. Currently, alerts are
improved primarily through manual review and by collecting user feedback. However, these methods are labor-
intensive and do not allow for a timely analysis of user responses to alerts from a comprehensive aspect. The
amount of alert log data is large, Vanderbilt University Medical Center generated over 3 million alert firings in
2020. There is an urgent need to utilize the data from the alert log and EHR to develop a data-driven process to
generate suggestions for refining alert logic or improving clinical processes.
To address this gap, I propose to use explainable artificial intelligence (XAI) combined with bias mitigation tech-
niques to build predictive models that comprehensively learn user responses to alerts and in turn automatically
generate responsible suggestions to improve the original logic of alerts. This project is divided into two phases
with three specific aims. In the K99 phase, I will be mentored by a multidisciplinary team of experts to learn the
latest XAI and bias mitigation techniques, as well as CDS evaluation and management, and to achieve the
following two aims: Aim 1) Develop a standard-based taxonomy of features that affect user response to CDS
alerts and Aim 2) Develop a data-driven process to generate suggestions for improving alert criteria using XAI
approaches. I will then transition to the independent research phase R00 to achieve Aim 3) Evaluate generated
suggestions using a mixed-methods design. Throughout this research, I expect to provide a standards-based
taxonomy of features that affect user response to alerts, an innovative data-driven process capable of generating
suggestions to improve alerts. I will also produce a set of expert-validated suggestions. This study could signif-
icantly contribute to the CDS management and clinical processes improvements.
My career development plan and the proposed research are aligned with my current skills and experiences in
CDS and machine learning. Based on complementary expertise from my mentor team, I will develop competen-
cies in four areas: CDS, informatics methods, implementation science, and career development and profession-
alism to transfer to an independent researcher. Overall, this project can help me launch an independent research
career in developing explainable, intelligent CDS tools to improve patient safety, provide standardized care, and
promote an equitable and efficient healthcare system.
项目总结
在过去的十年里,联邦政府已经花费了超过340亿美元来有意义地使用ELEC-
电子病历(EHR)。然而,临床决策支持(CDS)警报的接受率是一个关键
在电子病历的成分中,低于10%。大量低相关性警报(例如,在
心脏复苏)不仅增加了临床医生的负担,而且可能导致警觉疲劳的开始,
造成对重要警示的忽视,对患者安全构成严重威胁。目前,警报是
主要通过手动审查和收集用户反馈进行改进。然而,这些方法都是人工的-
信息不集中,不能从全面的角度及时分析用户对警报的反应。这个
警报日志数据量很大,范德比尔特大学医学中心在
2020年。迫切需要利用警报日志和电子病历中的数据来开发数据驱动的流程,以
为完善警报逻辑或改进临床流程生成建议。
为了解决这一差距,我建议使用可解释人工智能(XAI)与偏见缓解技术相结合-
Niques构建预测模型,全面学习用户对警报的反应,进而自动
生成负责任的建议,以改进警报的原始逻辑。这个项目分为两个阶段。
有三个明确的目标。在K99阶段,我将由一个多学科的专家团队指导,学习
最新的XAI和偏差缓解技术,以及CDS评估和管理,并实现
以下两个目标:目标1)开发影响用户对CDS响应的特征的基于标准的分类
警报和目标2)开发数据驱动的流程,以使用XAI生成改进警报标准的建议
接近了。然后我将过渡到独立研究阶段R00以实现目标3)评估生成
建议采用混合方法设计。在整个研究过程中,我希望提供一个基于标准的
对影响用户警报响应的功能进行分类,这是一种创新的数据驱动流程,能够生成
改进警报的建议。我还将提出一系列经过专家验证的建议。这项研究可能标志着-
致力于CDS管理和临床流程的改进。
我的职业发展计划和建议的研究与我目前的技能和经验相一致
CD和机器学习。基于我的导师团队的互补专业知识,我将发展竞争力-
四个领域的CIES:CD、信息学方法、实施科学、职业发展和职业-
向独立的研究人员转移。总体而言,这个项目可以帮助我展开独立的研究
从事开发可解释的智能CDS工具以提高患者安全性、提供标准化护理以及
促进公平高效的医疗体系。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
New onset delirium prediction using machine learning and long short-term memory (LSTM) in electronic health record.
- DOI:10.1093/jamia/ocac210
- 发表时间:2022-12-13
- 期刊:
- 影响因子:6.4
- 作者:Liu, Siru;Schlesinger, Joseph J.;McCoy, Allison B.;Reese, Thomas J.;Steitz, Bryan;Russo, Elise;Koh, Brian;Wright, Adam
- 通讯作者:Wright, Adam
Using AI-generated suggestions from ChatGPT to optimize clinical decision support.
- DOI:10.1093/jamia/ocad072
- 发表时间:2023-06-20
- 期刊:
- 影响因子:6.4
- 作者:Liu, Siru;Wright, Aileen P.;Patterson, Barron L.;Wanderer, Jonathan P.;Turer, Robert W.;Nelson, Scott D.;McCoy, Allison B.;Sittig, Dean F.;Wright, Adam
- 通讯作者:Wright, Adam
Leveraging natural language processing to identify eligible lung cancer screening patients with the electronic health record.
利用自然语言处理来识别具有电子健康记录的合格肺癌筛查患者。
- DOI:10.1016/j.ijmedinf.2023.105136
- 发表时间:2023
- 期刊:
- 影响因子:4.9
- 作者:Liu,Siru;McCoy,AllisonB;Aldrich,MelindaC;Sandler,KimL;Reese,ThomasJ;Steitz,Bryan;Bian,Jiang;Wu,Yonghui;Russo,Elise;Wright,Adam
- 通讯作者:Wright,Adam
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Siru Liu其他文献
Siru Liu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Siru Liu', 18)}}的其他基金
Optimizing Clinical Decision Support Alerts Using Explainable Artificial Intelligence (XAI)
使用可解释的人工智能 (XAI) 优化临床决策支持警报
- 批准号:
10879413 - 财政年份:2022
- 资助金额:
$ 8.96万 - 项目类别:
相似海外基金
Unraveling the Dynamics of International Accounting: Exploring the Impact of IFRS Adoption on Firms' Financial Reporting and Business Strategies
揭示国际会计的动态:探索采用 IFRS 对公司财务报告和业务战略的影响
- 批准号:
24K16488 - 财政年份:2024
- 资助金额:
$ 8.96万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Mighty Accounting - Accountancy Automation for 1-person limited companies.
Mighty Accounting - 1 人有限公司的会计自动化。
- 批准号:
10100360 - 财政年份:2024
- 资助金额:
$ 8.96万 - 项目类别:
Collaborative R&D
Accounting for the Fall of Silver? Western exchange banking practice, 1870-1910
白银下跌的原因是什么?
- 批准号:
24K04974 - 财政年份:2024
- 资助金额:
$ 8.96万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CPS: Medium: Making Every Drop Count: Accounting for Spatiotemporal Variability of Water Needs for Proactive Scheduling of Variable Rate Irrigation Systems
CPS:中:让每一滴水都发挥作用:考虑用水需求的时空变化,主动调度可变速率灌溉系统
- 批准号:
2312319 - 财政年份:2023
- 资助金额:
$ 8.96万 - 项目类别:
Standard Grant
A New Direction in Accounting Education for IT Human Resources
IT人力资源会计教育的新方向
- 批准号:
23K01686 - 财政年份:2023
- 资助金额:
$ 8.96万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
An empirical and theoretical study of the double-accounting system in 19th-century American and British public utility companies
19世纪美国和英国公用事业公司双重会计制度的实证和理论研究
- 批准号:
23K01692 - 财政年份:2023
- 资助金额:
$ 8.96万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
An Empirical Analysis of the Value Effect: An Accounting Viewpoint
价值效应的实证分析:会计观点
- 批准号:
23K01695 - 财政年份:2023
- 资助金额:
$ 8.96万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Accounting model for improving performance on the health and productivity management
提高健康和生产力管理绩效的会计模型
- 批准号:
23K01713 - 财政年份:2023
- 资助金额:
$ 8.96万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
New Role of Not-for-Profit Entities and Their Accounting Standards to Be Unified
非营利实体的新角色及其会计准则将统一
- 批准号:
23K01715 - 财政年份:2023
- 资助金额:
$ 8.96万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Improving Age- and Cause-Specific Under-Five Mortality Rates (ACSU5MR) by Systematically Accounting Measurement Errors to Inform Child Survival Decision Making in Low Income Countries
通过系统地核算测量误差来改善特定年龄和特定原因的五岁以下死亡率 (ACSU5MR),为低收入国家的儿童生存决策提供信息
- 批准号:
10585388 - 财政年份:2023
- 资助金额:
$ 8.96万 - 项目类别: