Anatomical connectivity and activity in primary visual cortex of mouse
小鼠初级视觉皮层的解剖连接和活动
基本信息
- 批准号:10505662
- 负责人:
- 金额:$ 130.92万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:AnatomyAnimalsAxonBRAIN initiativeBrainCellsCognitiveCollaborationsCommunicationCommunitiesComplexDataData SetDiseaseElectron MicroscopeElectrophysiology (science)Functional ImagingFundingGoalsGraphHigher Order Chromatin StructureHumanImageIn VitroInstitutesInterneuronsKnowledgeLearningLengthMammalsMedicineMethodsModelingMoonMorphologyMotorMusNeocortexNeuronsNeurosciencesPatternPlatinumPreparationProbabilityPropertyResolutionSample SizeScienceShipsSliceStimulusStructureSynapsesTaxonomyTestingTextureThickTissuesTrainingViralVisualVisual CortexWhole-Cell RecordingsWorkarea V1area striataawakebasecell cortexcell typecollegedeep learningexcitatory neuronflexibilityin vivoin vivo calcium imagingin vivo two-photon imaginginsightmillimetermoviepetabytepredictive modelingpreferenceprogramsreconstructionrelating to nervous systemresponsesecondary analysistranscriptomics
项目摘要
Project Summary
Estimates of the total length of axonal "wiring" in the human brain are on the order of hundreds of thousands
of kilometers. Understanding the fundamental principles underlying the connectivity between cells is a daunt-
ing task, but it has become increasingly clear that there are canonical connectivity patterns across the layers
of the mammalian cortex. Many of these pairwise connectivity rules between cells have been discovered using
multi-patching in slices, but examining higher-order connectivity motifs (for example, triangular motifs) is difficult
in the slice preparation. Furthermore, a central explanatory goal of neuroscience is to relate functional proper-
ties of neurons to the underlying connectivity between them. Achieving this goal requires overcoming significant
technical challenges, but a few heroic studies have managed to identify such functional/structural principles such
as enhanced "like-to-like" connectivity in visual cortex cells that prefer similarly oriented stimuli. Over the past
five years, our team has participated in a "moon-shot" project as part of the IARPA and BRAIN Initiative-funded
MICrONS project to collect functional and synaptic-scale anatomical data from a millimeter cube of mouse visual
cortex. Functional in vivo calcium imaging of this volume was performed at Baylor College of Medicine in Hous-
ton, then the mouse was shipped to Seattle where the same volume was extracted, prepared, sliced at 40nm
thickness, and imaged on an array of advanced electron microscopes. Finally, the approximately two petabyte
image stack was finely-aligned and segmented by Sebastian Seung's group at Princeton. Achieving this ambi-
tious goal took almost the entire five years of the MICrONS program which ended in July 2021. This data set
has now beeen shared with the entire neuroscience community and has huge untapped potential for scientific
discovery. In Aim 1 we will use graph theoretical methods and focus our analysis to identify local higher-order
circuit motifs across layers and large-scale modules between excitatory neurons across cortical layers focusing
in mouse V1. We will test the hypothesis that groups of excitatory neurons form tightly-connected modules with
sparse, reciprocal connections to other modules. In Aim 2 we will focus on relating structure to function. At the
local circuit level we will characterize the relationships between stimulus selectivity and connectivity within and
across cortical layers in V1. We will test the hypothesis that connected groups of neurons (i.e. structural modules)
form computational modules to represent similar stimulus preferences (such as textures). For these analyses we
will leverage validated deep learning predictive models that provide a flexible, systematic method to characterize
even non-classical, non-linear feature selectivities of neurons and find the neuron's most-exciting inputs.
项目摘要
据估计,人类大脑中轴突“连线”的总长度约为数十万。
公里。理解细胞之间连接的基本原理是一件令人生畏的事情-
任务,但越来越清楚的是,跨层存在规范的连接模式
哺乳动物大脑皮层。细胞之间的这些成对连接规则中的许多已经使用
切片中的多修补,但检查高阶连接基序(例如,三角基序)是困难的
在切片准备中。此外,神经科学的一个中心解释目标是将功能正确的-
神经元与它们之间的潜在连接的联系。实现这一目标需要克服重大困难。
技术挑战,但一些大胆的研究已经设法确定了这样的功能/结构原则,
在视觉皮层细胞中增强的“相似”连接性,这些细胞更喜欢类似方向的刺激。过去
五年来,我们的团队参与了一个“登月”项目,作为IARPA和BRAIN计划资助的一部分,
MICrONS项目从一个毫米立方体的小鼠视觉中收集功能和突触尺度的解剖数据
皮层该体积的功能性体内钙成像在位于Hous-Hous-Hous-Hous-Baylor医学院进行。
吨,然后将小鼠运送到西雅图,在那里提取相同体积,制备,在40 nm处切片
厚度,并在先进的电子显微镜阵列上成像。最后,大约2 PB的
图像堆栈由普林斯顿大学的塞巴斯蒂安·Seung小组进行精细对齐和分割。实现这一目标--
MICronS计划于2021年7月结束,我们几乎花了整整五年时间才达成目标。该数据集
现在已经与整个神经科学界分享,并具有巨大的未开发的科学潜力。
的发现在目标1中,我们将使用图论方法,并将我们的分析重点放在识别局部高阶
跨皮层兴奋性神经元之间的跨层电路图案和大规模模块聚焦
在小鼠V1。我们将检验兴奋性神经元组形成紧密连接的模块的假设,
与其他模块的稀疏、相互连接。在目标2中,我们将重点关注结构与功能的关系。在
局部电路水平,我们将表征刺激选择性和连接性之间的关系,
穿过V1的皮层我们将测试连接的神经元组(即结构模块)
形成计算模块来表示类似的刺激偏好(例如纹理)。对于这些分析,我们
将利用经过验证的深度学习预测模型,提供一种灵活、系统的方法来表征
即使是非经典的,非线性的特征选择性的神经元,并找到神经元的最令人兴奋的输入。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Fast decisions reflect biases; slow decisions do not
- DOI:10.1103/physreve.110.024305
- 发表时间:2024-08-12
- 期刊:
- 影响因子:2.4
- 作者:Linn,Samantha;Lawley,Sean D.;Josic,Kresimir
- 通讯作者:Josic,Kresimir
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zachary Samuel Pitkow其他文献
Zachary Samuel Pitkow的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zachary Samuel Pitkow', 18)}}的其他基金
CRCNS: Neural computations for continuous control in virtual reality foraging
CRCNS:虚拟现实觅食中连续控制的神经计算
- 批准号:
10266181 - 财政年份:2020
- 资助金额:
$ 130.92万 - 项目类别:
CRCNS: Neural computations for continuous control in virtual reality foraging
CRCNS:虚拟现实觅食中连续控制的神经计算
- 批准号:
10445287 - 财政年份:2020
- 资助金额:
$ 130.92万 - 项目类别:
CRCNS: Neural computations for continuous control in virtual reality foraging
CRCNS:虚拟现实觅食中连续控制的神经计算
- 批准号:
10659138 - 财政年份:2020
- 资助金额:
$ 130.92万 - 项目类别:
相似海外基金
The earliest exploration of land by animals: from trace fossils to numerical analyses
动物对陆地的最早探索:从痕迹化石到数值分析
- 批准号:
EP/Z000920/1 - 财政年份:2025
- 资助金额:
$ 130.92万 - 项目类别:
Fellowship
Animals and geopolitics in South Asian borderlands
南亚边境地区的动物和地缘政治
- 批准号:
FT230100276 - 财政年份:2024
- 资助金额:
$ 130.92万 - 项目类别:
ARC Future Fellowships
The function of the RNA methylome in animals
RNA甲基化组在动物中的功能
- 批准号:
MR/X024261/1 - 财政年份:2024
- 资助金额:
$ 130.92万 - 项目类别:
Fellowship
Ecological and phylogenomic insights into infectious diseases in animals
对动物传染病的生态学和系统发育学见解
- 批准号:
DE240100388 - 财政年份:2024
- 资助金额:
$ 130.92万 - 项目类别:
Discovery Early Career Researcher Award
Zootropolis: Multi-species archaeological, ecological and historical approaches to animals in Medieval urban Scotland
Zootropolis:苏格兰中世纪城市动物的多物种考古、生态和历史方法
- 批准号:
2889694 - 财政年份:2023
- 资助金额:
$ 130.92万 - 项目类别:
Studentship
Using novel modelling approaches to investigate the evolution of symmetry in early animals.
使用新颖的建模方法来研究早期动物的对称性进化。
- 批准号:
2842926 - 财政年份:2023
- 资助金额:
$ 130.92万 - 项目类别:
Studentship
Study of human late fetal lung tissue and 3D in vitro organoids to replace and reduce animals in lung developmental research
研究人类晚期胎儿肺组织和 3D 体外类器官在肺发育研究中替代和减少动物
- 批准号:
NC/X001644/1 - 财政年份:2023
- 资助金额:
$ 130.92万 - 项目类别:
Training Grant
RUI: Unilateral Lasing in Underwater Animals
RUI:水下动物的单侧激光攻击
- 批准号:
2337595 - 财政年份:2023
- 资助金额:
$ 130.92万 - 项目类别:
Continuing Grant
RUI:OSIB:The effects of high disease risk on uninfected animals
RUI:OSIB:高疾病风险对未感染动物的影响
- 批准号:
2232190 - 财政年份:2023
- 资助金额:
$ 130.92万 - 项目类别:
Continuing Grant
A method for identifying taxonomy of plants and animals in metagenomic samples
一种识别宏基因组样本中植物和动物分类的方法
- 批准号:
23K17514 - 财政年份:2023
- 资助金额:
$ 130.92万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)