Physiologically Based Pharmacokinetic Modeling of Silica Nanoparticles
基于生理学的二氧化硅纳米颗粒药代动力学模型
基本信息
- 批准号:10508729
- 负责人:
- 金额:$ 8.11万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-06 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAnimal ModelAnimalsBiodistributionCanis familiarisCharacteristicsClinicalClinical DataClinical PharmacologyComplexDataDevelopmentDoseDrug Delivery SystemsDrug KineticsDrug ModelingsGoalsHumanInfrastructureKnowledgeLaboratory StudyLiteratureMathematical Model SimulationMathematicsMedicalModelingMononuclearMusOrganOrganismOryctolagus cuniculusPerformancePhagocytesPharmaceutical PreparationsPhysiologicalPhysiologyPorosityPre-Clinical ModelPrincipal InvestigatorPropertyPublishingRattusRecording of previous eventsResearchResearch Project GrantsRodentRodent ModelShapesSilicon DioxideSiteSurfaceSystemTechniquesTherapeuticToxic effectTranslatingUtahbiomaterial compatibilityclinical translationdelivery vehicleexperiencefirst-in-humanin vivoinnovationlymphatic circulationmacromoleculenanocarriernanoparticlenanoparticle drugpharmacokinetic modelphysiologically based pharmacokineticspre-clinicalpredictive modelingtooluptake
项目摘要
PROJECT SUMMARY
Silica nanoparticles are multifunctional and biocompatible inorganic nanocarriers with enormous potential for
drug delivery. Their unique structural composition and porosity facilitates the loading of large therapeutic
payloads for site-specific drug delivery. Since past two decades our team characterized silica nanoparticles
and obtained data on cellular uptake, pharmacokinetics, and toxicity in rodents. However, very little is known
about pharmacokinetics and biodistribution of silica nanoparticles in humans. A better understanding of the
pharmacokinetics of silica nanoparticles in humans is essential for their clinical translation. Physiologically
based pharmacokinetic (PBPK) modeling is well established strategy to translate mechanistic knowledge from
animals to humans. We propose to develop PBPK models of silica nanoparticles in mice and rats and
extrapolate them to humans to establish a relationship between organ accumulation, and human dose. PBPK
models integrate compound specific data with physiology of the organism to predict the pharmacokinetics of
drugs. PBPK models are mechanistic and can account for complex in vivo transport mechanisms of
nanoparticles such as opsonization, mononuclear phagocyte system uptake, lymphatic transport, and cellular
internalization. Once the predictive performance of nanoparticle PBPK models in preclinical models is verified,
the mechanisms governing nanoparticle PK can be easily extrapolated to humans by replacing relevant
physiological information. The final human nanoparticle PBPK model extrapolated from animals can be used
for first-in-human predictions. There are no PBPK models available for silica nanoparticles that can incorporate
all relevant properties required for extrapolation to humans. Our long-term goal is to successfully translate
silica nanoparticles to human clinical use as drug delivery vehicles. The objective of this proposal is to translate
the mechanisms of nanoparticle distribution from rodents to humans. The Specific Aims of the proposal are: 1)
Develop and validate PBPK models for various silica nanoparticles in mice and rats, 2) Extrapolate the rodent
PBPK model of silica nanoparticles to humans and verify the predictions using clinical data. The proposed
research addresses a significant unmet need for evaluating the relationship between dose and organ
accumulation of silica nanoparticles in humans. Our research project is innovative because we use
mathematical modeling and simulation techniques that use data obtained from our laboratory studies and
published literature. The data obtained from this research project will be used for submitting an R01 application
to develop and validate PBPK models for silica nanoparticles with drugs and macromolecules. The PBPK
models for the R01 proposal will include larger animal species such as dogs and rabbits.
项目摘要
二氧化硅纳米颗粒是多功能和生物相容性的无机纳米载体,具有巨大的应用潜力。
药物输送其独特的结构组成和多孔性有利于装载大的治疗药物,
用于位点特异性药物递送的有效载荷。在过去的二十年里,我们的团队表征了二氧化硅纳米颗粒
并获得了啮齿类动物的细胞摄取、药代动力学和毒性数据。然而,
二氧化硅纳米颗粒在人体内的药代动力学和生物分布。更好地理解
二氧化硅纳米颗粒在人体中的药代动力学对于它们的临床转化是必要的。生理
基于药代动力学(PBPK)建模是一种成熟的策略,
动物到人类我们建议在小鼠和大鼠中开发二氧化硅纳米颗粒的PBPK模型,
将其外推至人体,以建立器官蓄积与人体剂量之间的关系。PBPK
模型将化合物特异性数据与生物体的生理学相结合,
毒品PBPK模型是机制性的,并且可以解释PBPK的复杂体内转运机制。
纳米颗粒,如调理作用,单核吞噬细胞系统摄取,淋巴转运,和细胞
内化一旦验证了纳米颗粒PBPK模型在临床前模型中的预测性能,
控制纳米颗粒PK的机制可以很容易地外推到人类,
生理信息。可以使用从动物外推的最终人纳米颗粒PBPK模型
for first-in-human人类predictions预测.没有可用于二氧化硅纳米颗粒的PBPK模型,
外推到人类所需的所有相关特性。我们的长期目标是成功地翻译
二氧化硅纳米粒子作为药物输送载体应用于人体临床。本提案的目的是翻译
纳米颗粒从啮齿动物到人类的分布机制。建议的具体目标是:1)
开发并验证小鼠和大鼠中各种二氧化硅纳米颗粒的PBPK模型,2)外推啮齿动物
将二氧化硅纳米颗粒的PBPK模型应用于人体,并使用临床数据验证预测。拟议
研究解决了评价剂量与器官之间关系的重大未满足需求
二氧化硅纳米颗粒在人体内的累积。我们的研究项目是创新的,因为我们使用
数学建模和模拟技术,使用从我们的实验室研究中获得的数据,
出版的文献。从本研究项目中获得的数据将用于提交R 01申请
开发和验证二氧化硅纳米颗粒与药物和大分子的PBPK模型。的PBPK
R 01提案的模型将包括较大的动物物种,如狗和兔子。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Venkata K Yellepeddi其他文献
Venkata K Yellepeddi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Venkata K Yellepeddi', 18)}}的其他基金
Physiologically Based Pharmacokinetic Modeling of Silica Nanoparticles
基于生理学的二氧化硅纳米颗粒药代动力学模型
- 批准号:
10697386 - 财政年份:2022
- 资助金额:
$ 8.11万 - 项目类别:
相似海外基金
Quantification of Neurovasculature Changes in a Post-Hemorrhagic Stroke Animal-Model
出血性中风后动物模型中神经血管变化的量化
- 批准号:
495434 - 财政年份:2023
- 资助金额:
$ 8.11万 - 项目类别:
Bioactive Injectable Cell Scaffold for Meniscus Injury Repair in a Large Animal Model
用于大型动物模型半月板损伤修复的生物活性可注射细胞支架
- 批准号:
10586596 - 财政年份:2023
- 资助金额:
$ 8.11万 - 项目类别:
A Comparison of Treatment Strategies for Recovery of Swallow and Swallow-Respiratory Coupling Following a Prolonged Liquid Diet in a Young Animal Model
幼年动物模型中长期流质饮食后吞咽恢复和吞咽呼吸耦合治疗策略的比较
- 批准号:
10590479 - 财政年份:2023
- 资助金额:
$ 8.11万 - 项目类别:
Small animal model for evaluating the impacts of cleft lip repairing scar on craniofacial growth and development
评价唇裂修复疤痕对颅面生长发育影响的小动物模型
- 批准号:
10642519 - 财政年份:2023
- 资助金额:
$ 8.11万 - 项目类别:
Diurnal grass rats as a novel animal model of seasonal affective disorder
昼夜草鼠作为季节性情感障碍的新型动物模型
- 批准号:
23K06011 - 财政年份:2023
- 资助金额:
$ 8.11万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Longitudinal Ocular Changes in Naturally Occurring Glaucoma Animal Model
自然发生的青光眼动物模型的纵向眼部变化
- 批准号:
10682117 - 财政年份:2023
- 资助金额:
$ 8.11万 - 项目类别:
A whole animal model for investigation of ingested nanoplastic mixtures and effects on genomic integrity and health
用于研究摄入的纳米塑料混合物及其对基因组完整性和健康影响的整体动物模型
- 批准号:
10708517 - 财政年份:2023
- 资助金额:
$ 8.11万 - 项目类别:
A Novel Large Animal Model for Studying the Developmental Potential and Function of LGR5 Stem Cells in Vivo and in Vitro
用于研究 LGR5 干细胞体内外发育潜力和功能的新型大型动物模型
- 批准号:
10575566 - 财政年份:2023
- 资助金额:
$ 8.11万 - 项目类别:
Elucidating the pathogenesis of a novel animal model mimicking chronic entrapment neuropathy
阐明模拟慢性卡压性神经病的新型动物模型的发病机制
- 批准号:
23K15696 - 财政年份:2023
- 资助金额:
$ 8.11万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The effect of anti-oxidant on swallowing function in an animal model of dysphagia
抗氧化剂对吞咽困难动物模型吞咽功能的影响
- 批准号:
23K15867 - 财政年份:2023
- 资助金额:
$ 8.11万 - 项目类别:
Grant-in-Aid for Early-Career Scientists