Supramolecular polymers for targeted protein degradation

用于靶向蛋白质降解的超分子聚合物

基本信息

  • 批准号:
    10511617
  • 负责人:
  • 金额:
    $ 7.4万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-01 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

Project Summary Vision: Recent advances in targeted protein degradation strategies such as hydrophobic tagging (HyT) and proteolysis targeting chimeras (PROTACs) have the potential to revolutionize therapeutic development as we know it. This is provided that these strategies can overcome the translational challenges of targeted delivery, improved specificity and cellular internalization. This project outlines two strategies to couple these advanced synthetic biology techniques with novel supramolecular polymers to address these significant hurdles currently facing the field. Supramolecular polymers provide the opportunity to enhance cellular internalization, provide dynamic presentation of protein binding ligands and provide the potential for multivalent, and in turn higher affinity, binding interactions with target proteins. The success of this project could unlock a vast array of new drug targets, previously thought to be undruggable, while circumventing the reliance on small molecule therapeutics and their associated problems with drug resistance. This project will investigate the opportunity of dynamic supramolecular polymers as a strategy to enhance the efficacy of targeted protein degradation therapies The misfolding or misregulation of proteins has been shown to lead to the development of many diseases including neurodegenerative diseases, cancers and fibrotic disorders. Small molecule drugs, designed to inhibit protein function is the current gold standard in the vast majority of clinically-used therapeutic agents available. However, to achieve clinically relevant protein inhibition, greater than 90% target binding is required, resulting in high dosing levels that can result in off-target effects. Further, these approaches are only suitable when the protein target has an active binding site suitable for inhibition. What about the proteins that don’t have an active binding site or contribute to disease through other mechanisms? What if there was another way to not just inhibit but to selectively degrade these aberrant proteins as a therapeutic strategy? We feel this can be achieved with supramolecular polymers designed to achieve targeted protein degradation. To demonstrate the potential and principle of supramolecular polymer targeted protein degraders, we will address the following two specific aims: (1) To synthesize and characterize biocompatible supramolecular polymers capable of self-assembly into nanostructures coupled with achieving degradation through a hydrophobic tagging approach of a protein of interest, (2) Demonstrate efficacy of a multifunctional supramolecular PROTAC polymer capable of self-assembly, cell internalization, targeting and subsequent degradation of a protein of interest.
项目摘要 愿景:疏水标签(HyT)等靶向蛋白质降解策略的最新进展 和蛋白水解靶向嵌合体(PROTAC)具有革命性的治疗潜力, 发展,因为我们知道它。这是提供这些策略可以克服翻译 靶向递送、改进的特异性和细胞内化的挑战。该项目概述了两个 将这些先进的合成生物学技术与新型超分子聚合物结合起来的策略 以解决该领域目前面临的这些重大障碍。超分子聚合物提供了 增强细胞内化的机会,提供蛋白结合配体的动态呈递 并提供了与靶的多价结合相互作用的可能性,进而提供了更高的亲和力 proteins.该项目的成功可能会解锁大量新的药物靶点, 不可用药,同时避免对小分子治疗剂及其相关药物的依赖, 耐药性的问题。 本计画将探讨动态超分子聚合物作为策略的机会 为了增强靶向蛋白降解疗法的功效, 蛋白质的错误折叠或错误调节已被证明会导致许多 疾病,包括神经变性疾病、癌症和纤维变性疾病。小分子药物, 设计用于抑制蛋白质功能的药物是目前绝大多数临床使用的 可用的治疗剂。然而,要实现临床相关蛋白抑制,大于90% 需要靶结合,导致高剂量水平,这可能导致脱靶效应。此外,本发明还 这些方法仅在蛋白质靶具有适合于 抑制作用那些没有活性结合位点或导致疾病的蛋白质呢 通过其他机制?如果有另一种方法不仅能抑制, 降解这些异常蛋白质作为治疗策略我们认为这可以通过 超分子聚合物,旨在实现靶向蛋白质降解。以证明 超分子聚合物靶向蛋白质降解剂的潜力和原理,我们将讨论 具体目标有两个:(1)合成和表征生物相容性超分子聚合物 能够自组装成纳米结构,并通过疏水性 目的蛋白质的标记方法,(2)证明多功能超分子标记的功效, 能够自组装、细胞内化、靶向和随后降解的PROTAC聚合物 一种蛋白质。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tristan Clemons其他文献

Tristan Clemons的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Tristan Clemons', 18)}}的其他基金

Biology the initiator: Harnessing Reactive Oxygen Species for Biocompatible Polymerization
生物学引发者:利用活性氧进行生物相容性聚合
  • 批准号:
    10667740
  • 财政年份:
    2023
  • 资助金额:
    $ 7.4万
  • 项目类别:

相似海外基金

Applications of Deep Learning for Binding Affinity Prediction
深度学习在结合亲和力预测中的应用
  • 批准号:
    2887848
  • 财政年份:
    2023
  • 资助金额:
    $ 7.4万
  • 项目类别:
    Studentship
Metalloenzyme binding affinity prediction with VM2
使用 VM2 预测金属酶结合亲和力
  • 批准号:
    10697593
  • 财政年份:
    2023
  • 资助金额:
    $ 7.4万
  • 项目类别:
Building a binding community - Capacity and capability for affinity and kinetic analysis of molecular interactions.
建立结合社区 - 分子相互作用的亲和力和动力学分析的能力和能力。
  • 批准号:
    MR/X013227/1
  • 财政年份:
    2022
  • 资助金额:
    $ 7.4万
  • 项目类别:
    Research Grant
Using dynamic network models to quantitatively predict changes in binding affinity/specificity that arise from long-range amino acid substitutions
使用动态网络模型定量预测由长程氨基酸取代引起的结合亲和力/特异性的变化
  • 批准号:
    10797940
  • 财政年份:
    2022
  • 资助金额:
    $ 7.4万
  • 项目类别:
Using dynamic network models to quantitatively predict changes in binding affinity/specificity that arise from long-range amino acid substitutions
使用动态网络模型定量预测由长距离氨基酸取代引起的结合亲和力/特异性的变化
  • 批准号:
    10502084
  • 财政年份:
    2022
  • 资助金额:
    $ 7.4万
  • 项目类别:
Using dynamic network models to quantitatively predict changes in binding affinity/specificity that arise from long-range amino acid substitutions
使用动态网络模型定量预测由长距离氨基酸取代引起的结合亲和力/特异性的变化
  • 批准号:
    10707418
  • 财政年份:
    2022
  • 资助金额:
    $ 7.4万
  • 项目类别:
Binding affinity of inositol phosphate analogs to protein toxin TcdB
磷酸肌醇类似物与蛋白质毒素 TcdB 的结合亲和力
  • 批准号:
    573604-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 7.4万
  • 项目类别:
    University Undergraduate Student Research Awards
Computational predictions of thermostability and binding affinity changes in enzymes
酶热稳定性和结合亲和力变化的计算预测
  • 批准号:
    2610945
  • 财政年份:
    2021
  • 资助金额:
    $ 7.4万
  • 项目类别:
    Studentship
I-Corps: Physics-Based Binding Affinity Estimator
I-Corps:基于物理的结合亲和力估计器
  • 批准号:
    2138667
  • 财政年份:
    2021
  • 资助金额:
    $ 7.4万
  • 项目类别:
    Standard Grant
Computational modelling and simulation of antibodies to enhance binding affinity of a potential Burkholderia pseudomallei therapeutic
抗体的计算模型和模拟,以增强潜在的鼻疽伯克霍尔德氏菌治疗剂的结合亲和力
  • 批准号:
    2750554
  • 财政年份:
    2021
  • 资助金额:
    $ 7.4万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了