Identification of CNS-Penetrant Tryptophan 2,3-Dioxygenase Degrading Ligands
CNS 渗透色氨酸 2,3-双加氧酶降解配体的鉴定
基本信息
- 批准号:10511398
- 负责人:
- 金额:$ 23.59万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:Active LearningActive SitesAffinityAlzheimer&aposs DiseaseAmino AcidsBasic ScienceBindingBinding SitesBiochemicalBiological AssayBiologyBrainCatabolismCell modelCell physiologyCentral Nervous System DiseasesChemistryClinical ResearchClinical TrialsDrug IndustryDrug KineticsEnzyme-Linked Immunosorbent AssayFDA approvedFutureHemeHumanHuntington DiseaseImmunologyIn VitroInstitutionJointsKnowledgeKynurenineLeadLigandsLinkMachine LearningMalignant NeoplasmsMeasuresMental DepressionMetabolismNerve DegenerationNeuronsNew AgentsParkinson DiseasePathway interactionsPeripheralPersonsPharmaceutical ChemistryPharmaceutical PreparationsPharmacologyPhysiologicalPilot ProjectsPropertyProsthesisProteinsResistanceSeriesSignal TransductionSiteSolidSolubilityTryptophanTryptophanaseUbiquitinUbiquitinationUp-RegulationUrsidae FamilyWorkanxiety-related behaviordesigndrug developmentdrug distributionin vitro Assayin vivoinhibitorinnovationneurogenesisneuropsychiatric disordernovelpreclinical trialprotein degradationscaffoldsmall moleculetherapeutic developmenttoolvirtual
项目摘要
ABSTRACT
Tryptophan 2,3-dioxygenase (TDO) is a key modulator of physiological neurogenesis and anxiety-related
behavior. Misregulated neuronal TDO activity causes elevated levels of tryptophan-kynurenine pathway
metabolites, which in turn, causes depression, brain degeneration, and neurodegenerative Alzheimer's,
Parkinson's, and Huntington's diseases. However, a critical need remains for identifying new agents that function
through innovative mechanisms to probe a range of pharmacological hypotheses regarding central TDO action,
ultimately advancing our overall pharmacological knowledge, and to also serve as leads for downstream
medicinal chemistry optimization, thus helping people live long healthy lives. To identify innovative inhibitors, we
engaged in a joint basic science-clinical study that identified a non-catalytic L-tryptophan (L-Trp) binding site in
human TDO that binds L-Trp surprisingly much tighter than the catalytic heme site. The newly discovered L-Trp
binding site is involved in regulating TDO activity and stability by suppressing ubiquitin-dependent degradation
when loaded with L-Trp. This finding has inspired us to propose a central hypothesis that this newly discovered
signaling site is an Achilles' heel of TDO for drug development. This application will fill the critical need to identify
CNS-penetrant protein-degrading ligands for exploring their biomedical potential. Towards this end, we will
employ our rigorous understanding of the underlying chemistry and biology to design compounds with a novel
mode of action that destabilize the signaling site of TDO or bind without enhancing the protein stability. These
agents will not target the catalytic activity of TDO but instead will disrupt its degradation resistance signal. We
will assess the effects of promising compounds on human TDO in cellular models to validate the innovative
approach and target. In the end, this work will open the door for designing revolutionarily new centrally-active
inhibitors targeting human TDO.
抽象的
色氨酸 2,3-双加氧酶 (TDO) 是生理神经发生和焦虑相关的关键调节剂
行为。神经元 TDO 活性失调导致色氨酸-犬尿氨酸通路水平升高
代谢物,进而导致抑郁症、大脑退化和神经退行性阿尔茨海默病,
帕金森病和亨廷顿舞蹈病。然而,仍然迫切需要确定能够发挥作用的新药物
通过创新机制探索一系列有关中枢 TDO 作用的药理学假设,
最终提高我们的整体药理学知识,并为下游提供线索
药物化学优化,从而帮助人们健康长寿。为了识别创新抑制剂,我们
参与了一项基础科学与临床联合研究,确定了非催化 L-色氨酸 (L-Trp) 结合位点
令人惊讶的是,人类 TDO 与 L-Trp 的结合比催化血红素位点紧密得多。新发现的L-色氨酸
结合位点通过抑制泛素依赖性降解来调节 TDO 活性和稳定性
当加载 L-Trp 时。这一发现启发我们提出一个中心假设,即这一新发现
信号位点是药物开发中 TDO 的致命弱点。该应用程序将满足识别的关键需求
中枢神经系统渗透蛋白降解配体,用于探索其生物医学潜力。为此,我们将
利用我们对基础化学和生物学的严格理解来设计具有新颖性的化合物
破坏 TDO 信号位点稳定或结合而不增强蛋白质稳定性的作用模式。这些
试剂不会针对 TDO 的催化活性,而是会破坏其抗降解信号。我们
将在细胞模型中评估有前途的化合物对人类 TDO 的影响,以验证创新
方法和目标。最终,这项工作将为设计革命性的新型中央主动式装置打开大门。
针对人类 TDO 的抑制剂。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ryan A Altman其他文献
Ryan A Altman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ryan A Altman', 18)}}的其他基金
Targeting Tryptophan Dioxygenase Degradation for Suppression of Tumor Immune Evasion
靶向色氨酸双加氧酶降解抑制肿瘤免疫逃避
- 批准号:
10436036 - 财政年份:2022
- 资助金额:
$ 23.59万 - 项目类别:
Targeting Tryptophan Dioxygenase Degradation for Suppression of Tumor Immune Evasion
靶向色氨酸双加氧酶降解抑制肿瘤免疫逃避
- 批准号:
10557210 - 财政年份:2022
- 资助金额:
$ 23.59万 - 项目类别:
Fluorination and Fluoroalkylation Strategies for Synthetic and Medicinal Chemistry
合成和药物化学的氟化和氟烷基化策略
- 批准号:
10670073 - 财政年份:2017
- 资助金额:
$ 23.59万 - 项目类别:
Fluorination and Fluoroalkylation Strategies for Synthetic and Medicinal Chemistry
合成和药物化学的氟化和氟烷基化策略
- 批准号:
10406418 - 财政年份:2017
- 资助金额:
$ 23.59万 - 项目类别:
Chromatography System for Organic Synthesis-Administrative Supplements for Equipment Purchases
有机合成色谱系统-设备购置管理补充
- 批准号:
10800414 - 财政年份:2017
- 资助金额:
$ 23.59万 - 项目类别:
Evaluation of Physicochemical Properties Imparted by Fluorinated Peptidomimetics
氟化肽模拟物赋予的理化性质的评价
- 批准号:
8823966 - 财政年份:2015
- 资助金额:
$ 23.59万 - 项目类别:
Asymmetric Pd(II)-catalyzed Ring-forming Reactions
不对称 Pd(II) 催化的成环反应
- 批准号:
7919955 - 财政年份:2008
- 资助金额:
$ 23.59万 - 项目类别:
相似海外基金
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
- 批准号:
2334970 - 财政年份:2024
- 资助金额:
$ 23.59万 - 项目类别:
Standard Grant
NSF-BSF: Towards a Molecular Understanding of Dynamic Active Sites in Advanced Alkaline Water Oxidation Catalysts
NSF-BSF:高级碱性水氧化催化剂动态活性位点的分子理解
- 批准号:
2400195 - 财政年份:2024
- 资助金额:
$ 23.59万 - 项目类别:
Standard Grant
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
- 批准号:
2334969 - 财政年份:2024
- 资助金额:
$ 23.59万 - 项目类别:
Standard Grant
Mechanochemical synthesis of nanocarbon and design of active sites for oxygen reducton/evolution reactions
纳米碳的机械化学合成和氧还原/演化反应活性位点的设计
- 批准号:
23K04919 - 财政年份:2023
- 资助金额:
$ 23.59万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Creation of porous inorganic frameworks with controlled structure of metal active sites by the building block method.
通过积木法创建具有金属活性位点受控结构的多孔无机框架。
- 批准号:
22KJ2957 - 财政年份:2023
- 资助金额:
$ 23.59万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Catalysis of Juxaposed Active Sites Created in Nanospaces and Their Applications
纳米空间中并置活性位点的催化及其应用
- 批准号:
23K04494 - 财政年份:2023
- 资助金额:
$ 23.59万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Generation of carbon active sites by modifying the oxygen containing functional groups and structures of carbons for utilizing to various catalytic reactions.
通过修饰碳的含氧官能团和结构来产生碳活性位点,用于各种催化反应。
- 批准号:
23K13831 - 财政年份:2023
- 资助金额:
$ 23.59万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CAREER: CAS: Understanding the Chemistry of Palladium and Silyl Compounds to Design Catalyst Active Sites
职业:CAS:了解钯和甲硅烷基化合物的化学性质以设计催化剂活性位点
- 批准号:
2238379 - 财政年份:2023
- 资助金额:
$ 23.59万 - 项目类别:
Continuing Grant
CAS: Collaborative Research: Tailoring the Distribution of Transient vs. Dynamic Active Sites in Solid-Acid Catalysts and Their Impacts on Chemical Conversions
CAS:合作研究:定制固体酸催化剂中瞬时活性位点与动态活性位点的分布及其对化学转化的影响
- 批准号:
2154399 - 财政年份:2022
- 资助金额:
$ 23.59万 - 项目类别:
Standard Grant
Engineering of Active Sites in Heterogeneous Catalysts for Sustainable Chemical and Fuel Production.
用于可持续化学和燃料生产的多相催化剂活性位点工程。
- 批准号:
RGPIN-2019-06633 - 财政年份:2022
- 资助金额:
$ 23.59万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




