Proteomics core
蛋白质组学核心
基本信息
- 批准号:10512626
- 负责人:
- 金额:$ 476.91万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-05-16 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:ADP ribosylationAdenosine Diphosphate RiboseAntiviral AgentsBindingBiologicalBiological AssayBiologyCOVID-19Cell Culture TechniquesCell modelCellsCellular AssayComplexCryoelectron MicroscopyDataDetectionDeuteriumDevelopmentDiseaseDrug InteractionsDrug TargetingEffectivenessFutureGoalsHealthcareHospitalsHydrogenImmune responseIn VitroIndividualInfectionInfrastructureInstitutesInterferonsLeadMass Spectrum AnalysisMeasurementMeasuresMethodologyMethodsModelingMolecularMonitorNatureNonstructural ProteinOralOrganismOutcomePeptide HydrolasesPharmaceutical PreparationsPharmacotherapyPhysiologicalPlayPost-Translational Protein ProcessingProteinsProteomicsRecombinantsReproducibilityResearchRoleSeverity of illnessSignal TransductionSpecificityStructureSystemTechnologyTherapeuticTimeVariantVial deviceViralViral PhysiologyViral ProteinsVirusWorkX-Ray Crystallographyassay developmentbasecrosslinkdesigndrug candidatedrug developmentdrug discoveryflexibilityhigh riskin vivoin vivo Modelinterestmultiplex assaynovelpandemic diseasepolypeptideprogramsprotein complexprotein expressionprotein structureresponsescreeningsmall moleculestoichiometrystructural biologysuccesstoolvirology
项目摘要
CORE 8: PROTEOMICS
SUMMARY
Readily distributed, orally bioavailable small molecule antiviral agent could play an outsized role not only in the
response to COVID-19, but also to future pandemics by reducing the severity of disease for those at highest risk
for serious outcomes, and by curtailing the strain that serious illness puts on hospitals and healthcare
infrastructure. Determining the molecular mechanism of biologically active viral proteins is a critical component
to a successful drug development pipeline. Proteomics approaches represent a critical tool for the study of viral
biology and drug development pipelines due to the capacity to assess viral protein activity in living cells using
high-throughput multiplexed assays. Furthermore, the agnostic nature of protein detection allows for proteomics
assays to be rapidly adapted to different viruses or host organisms.
The work proposed by this core will be performed at the Thermo Fisher Scientific Proteomics Facility for Disease
Target Discovery located at the J. David Gladstone Institutes at the UCSF campus. This facility and the
Proteomics Core, will be led by Dr. Swaney, an expert in mass-spectrometry based proteomics research with
a track record in the development and application of novel proteomics approaches to enable biological discovery.
Within the QCRG Pandemic Response Program, the goal of the Proteomics Core is to provide high-quality,
accurate, and reproducible proteomic analyses that measure viral proteins and their cellular activities. This will
enable the QCRG Drug Discovery Platform to design and identify lead compounds and develop effective cell-
based assays that measure drug candidate effectiveness in living cells. The proteomics assays described in this
core are essential to the success of the QCRG Pandemic Response Program and will support all Projects, as
well as the Screening Core, Integrative Modeling Core, and the In Vivo and In Vitro Virology Cores.
Efforts of the Proteomics Core will include measuring the direct effect that drugs have on viral protein
abundance and post-translational modifications during infection time courses in physiologically relevant cell
models, and drug target specificity using cellular thermal shift assays. To aid flexible structure determination and
viral protein assembly in cells and recombinant expression systems, we will also provide structural proteomics
approaches to measure subunit stoichiometry, domain topology, and protein and drug interaction interfaces.
Finally, we will develop assays to measure viral protein activity, including an ADP-ribosylation assay to measure
macrodomain activity, and a protease cleavage assay to measure vial protease proteolytic activity.
核心8:蛋白质组学
摘要
易于分布、口服生物可用的小分子抗病毒药物不仅在
应对新冠肺炎,但也通过降低高危人群的疾病严重性来应对未来的大流行
对于严重后果,并通过减少严重疾病给医院和医疗保健带来的压力
基础设施。确定具有生物活性的病毒蛋白的分子机制是一个关键组成部分
一条成功的药物开发流水线。蛋白质组学方法是研究病毒的关键工具
生物学和药物开发管道,因为有能力评估活细胞中的病毒蛋白活性
高通量多路分析。此外,蛋白质检测的不可知性允许蛋白质组学
快速适应不同病毒或宿主生物体的化验。
该核心提议的工作将在Thermo Fisher疾病科学蛋白质组学设施进行
目标发现号位于加州大学旧金山分校的J.大卫·格拉德斯通学院。这个设施和
蛋白质组学核心将由斯万尼博士领导,他是一位基于质谱学的蛋白质组学研究专家
在开发和应用新的蛋白质组方法以实现生物发现方面的跟踪记录。
在QCRG大流行应对计划中,蛋白质组学核心的目标是提供高质量、
准确、可重复的蛋白质组学分析,用于测量病毒蛋白质及其细胞活性。这将是
使QCRG药物发现平台能够设计和鉴定先导化合物,并开发有效的细胞-
基于在活细胞中测量候选药物有效性的分析。其中描述的蛋白质组学分析
核心对于QCRG流行病应对方案的成功至关重要,并将支持所有项目,如
以及筛选核心、综合建模核心、体内和体外病毒学核心。
蛋白质组学核心的工作将包括测量药物对病毒蛋白质的直接影响
生理相关细胞感染过程中的丰度和翻译后修饰
模型,以及使用细胞热位移分析的药物靶标特异性。以帮助灵活的结构确定和
病毒蛋白在细胞中的组装和重组表达系统,我们还将提供结构蛋白质组学
亚基化学计量学、结构域拓扑以及蛋白质和药物相互作用界面的测量方法。
最后,我们将开发检测病毒蛋白活性的方法,包括检测ADP-核糖化的方法。
大域活性,以及测定小瓶蛋白水解酶活性的蛋白酶裂解试验。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Danielle L Swaney其他文献
Danielle L Swaney的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Danielle L Swaney', 18)}}的其他基金
A universal multiplexing approach to unlock the hidden proteome
解锁隐藏蛋白质组的通用多重方法
- 批准号:
10240468 - 财政年份:2019
- 资助金额:
$ 476.91万 - 项目类别:
A universal multiplexing approach to unlock the hidden proteome
解锁隐藏蛋白质组的通用多重方法
- 批准号:
10478967 - 财政年份:2019
- 资助金额:
$ 476.91万 - 项目类别:














{{item.name}}会员




