Using natural language processing to determine predictors of healthy diet and physical activity behavior change in ovarian cancer survivors
使用自然语言处理确定卵巢癌幸存者健康饮食和身体活动行为变化的预测因子
基本信息
- 批准号:10510666
- 负责人:
- 金额:$ 18.19万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-02-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdherenceAdoptionAffectAmericanAmerican Cancer SocietyArtificial IntelligenceBehaviorBehavioralBehavioral MedicineCancer SurvivorCharacteristicsChronic DiseaseClinicalClinical DataComputersCoupledDataData SetDietDimensionsDisease ProgressionEducational InterventionEffectivenessFatty acid glycerol estersFiberFruitFundingGoalsGuidelinesHealthHealth educationHourHumanIndividualInstitutesInterventionLanguageLearningLife StyleMachine LearningMalignant NeoplasmsMalignant neoplasm of ovaryMethodsModelingMonitorNatural Language ProcessingNeural Network SimulationOutcomeParticipantPatient Outcomes AssessmentsPatientsPatternPersonal SatisfactionPhysical activityPopulationPreventiveProtocols documentationProviderRandomizedRecommendationRecurrent Malignant NeoplasmReportingRiskRoleSignal TransductionSpeechSurvivorsSystemTechniquesTelephoneTestingTimeTrainingTreatment EfficacyTrial of LaborUnited StatesVegetablesVoiceanticancer researchattentional controlbehavior changebehavior predictionbehavioral adherencebehavioral outcomecancer therapycostdemographicsexperiencegood diethealthy lifestylehealthy weighthigh riskimprovedinterestlifestyle datalifestyle interventionlongitudinal datasetmachine learning algorithmmachine learning modelmotivational enhancement therapynovelnutritionoutcome predictionpredictive modelingpreventprogramstelephone coachingtelephone-based
项目摘要
ABSTRACT
Cancer survivors are a growing population in the United States; more than 16 million currently live in the US and
by 2030 this number is expected to exceed 22 million. It is estimated that more than 50 percent of new cancer
cases could be eliminated through a combination of healthy behaviors (e.g., physical activity and healthy diet);
and cancer survivors are at high risk for developing new and recurrent cancer. Unfortunately, a significant
percentage of cancer survivors are not attaining the cancer preventive guidelines of healthy diet and physical
activity. In the past few decades, a variety of telephone-based lifestyle interventions have demonstrated
effectiveness in helping survivors meet cancer preventive guidelines, however these trials are labor intensive
and expensive to deliver, limiting their potential for broad dissemination. We propose to address this hurdle by
taking advantage of recent advances in artificial intelligence to reduce the cost and maximize the impact of these
much-needed interventions. Machine learning (ML) and Natural Language Processing (NLP) are analytical
techniques that automatically learn from direct and indirect patterns in data. We propose to use machine learned
algorithms to analyze speech to aid in predicting who may be at risk of poor adoption of healthy lifestyle
behaviors. These speech data will come from the Lifestyle Intervention for Ovarian cancer Enhanced Survival
(LIVES) study, a telephone-based lifestyle intervention testing whether a diet low in fat and high in vegetables,
fruit, and fiber, coupled with increased physical activity will increase time to disease progression in 1200 ovarian
cancer survivors who have recently completed treatment, as compared to an attention control. Intervention
coaches employed motivational interviewing to elicit behavior change and all calls on the LIVES trial were
recorded with repeat assessments of diet, physical activity, patient reported and clinical outcomes. We will use
this existing and robust longitudinal data set, which pairs conversational speech data with explicit outcomes, to
achieve the following objectives. 1) Develop a ML model to identify patterns in the interactions between coaches
and their participants that signal a likelihood of optimal behavior change in diet and physical activity given the
comprehensive LIVES data set, utilizing voice recorded calls, demographics, and clinical and patient reported
outcomes collected at multiple time points. 2) Decompose the ML model in terms of “intervenable factors”, so
that participant affect, coach adherence to the intervention protocol, and other important aspects of the
interaction can be individually evaluated for their role in predicting behavior change, as well as adherence to
intervention goals. This decomposition will directly enable early and targeted adjustments to intervention plans
for individuals, reducing the cost and increasing the efficacy of intervention strategies. ML and NLP methods can
produce models that listen to a coaching conversation and automatically predict whether it will result in positive
change towards enactment of healthy lifestyle behaviors. Such predictive models would enable more efficient,
effective, and individualized lifestyle interventions, the first step towards personalized behavioral medicine.
抽象的
在美国,癌症幸存者的数量不断增长;目前有超过 1600 万人居住在美国
到 2030 年,这一数字预计将超过 2200 万。据估计,超过 50% 的新发癌症
可以通过健康行为(例如身体活动和健康饮食)的结合来消除病例;
癌症幸存者患新发癌症和复发癌症的风险很高。不幸的是,一个重大的
癌症幸存者的百分比未达到健康饮食和身体健康的癌症预防指南
活动。在过去的几十年里,各种基于电话的生活方式干预措施已经证明
帮助幸存者达到癌症预防指南的有效性,但这些试验是劳动密集型的
而且交付成本昂贵,限制了其广泛传播的潜力。我们建议通过以下方式解决这一障碍
利用人工智能的最新进展来降低成本并最大限度地发挥这些影响
急需的干预措施。机器学习 (ML) 和自然语言处理 (NLP) 是分析性的
自动从数据中的直接和间接模式中学习的技术。我们建议使用机器学习
分析语音的算法,以帮助预测谁可能面临健康生活方式不良的风险
行为。这些语音数据将来自卵巢癌生活方式干预增强生存
(LIVES)研究,一项基于电话的生活方式干预测试是否低脂肪和高蔬菜饮食,
第 1200 章
最近完成治疗的癌症幸存者与注意力控制组相比。干涉
教练采用动机性访谈来引发行为改变,并且 LIVES 试验中的所有电话均经过
通过对饮食、体力活动、患者报告和临床结果的重复评估进行记录。我们将使用
这个现有的、强大的纵向数据集将会话语音数据与明确的结果配对,以
实现以下目标。 1) 开发一个机器学习模型来识别教练之间互动的模式
以及他们的参与者发出信号,考虑到饮食和身体活动发生最佳行为改变的可能性
全面的 LIVES 数据集,利用语音通话记录、人口统计数据以及临床和患者报告
在多个时间点收集的结果。 2)根据“可干预因素”分解ML模型,因此
参与者影响、教练对干预方案的遵守以及干预的其他重要方面
可以单独评估互动在预测行为变化以及遵守行为方面的作用
干预目标。这种分解将直接促进干预计划的早期和有针对性的调整
对于个人来说,降低成本并提高干预策略的有效性。 ML 和 NLP 方法可以
生成能够聆听教练对话并自动预测是否会产生积极结果的模型
转变为制定健康的生活方式行为。这种预测模型将实现更高效、
有效的、个性化的生活方式干预,是迈向个性化行为医学的第一步。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Steven Bethard其他文献
Steven Bethard的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Steven Bethard', 18)}}的其他基金
Extended Methods and Software Development for Health NLP
健康 NLP 的扩展方法和软件开发
- 批准号:
10413157 - 财政年份:2016
- 资助金额:
$ 18.19万 - 项目类别:
Extended Methods and Software Development for Health NLP
健康 NLP 的扩展方法和软件开发
- 批准号:
10209178 - 财政年份:2016
- 资助金额:
$ 18.19万 - 项目类别:
Extended Methods and Software Development for Health NLP
健康 NLP 的扩展方法和软件开发
- 批准号:
10689709 - 财政年份:2016
- 资助金额:
$ 18.19万 - 项目类别:
相似海外基金
An innovative, AI-driven prehabilitation platform that increases adherence, enhances post-treatment outcomes by at least 50%, and provides cost savings of 95%.
%20创新、%20AI驱动%20康复%20平台%20%20增加%20依从性、%20增强%20治疗后%20结果%20by%20at%20至少%2050%、%20和%20提供%20成本%20节省%20of%2095%
- 批准号:
10057526 - 财政年份:2023
- 资助金额:
$ 18.19万 - 项目类别:
Grant for R&D
Improving Repositioning Adherence in Home Care: Supporting Pressure Injury Care and Prevention
提高家庭护理中的重新定位依从性:支持压力损伤护理和预防
- 批准号:
490105 - 财政年份:2023
- 资助金额:
$ 18.19万 - 项目类别:
Operating Grants
I-Corps: Medication Adherence System
I-Corps:药物依从性系统
- 批准号:
2325465 - 财政年份:2023
- 资助金额:
$ 18.19万 - 项目类别:
Standard Grant
Unintrusive Pediatric Logging Orthotic Adherence Device: UPLOAD
非侵入式儿科记录矫形器粘附装置:上传
- 批准号:
10821172 - 财政年份:2023
- 资助金额:
$ 18.19万 - 项目类别:
Nuestro Sueno: Cultural Adaptation of a Couples Intervention to Improve PAP Adherence and Sleep Health Among Latino Couples with Implications for Alzheimer’s Disease Risk
Nuestro Sueno:夫妻干预措施的文化适应,以改善拉丁裔夫妇的 PAP 依从性和睡眠健康,对阿尔茨海默病风险产生影响
- 批准号:
10766947 - 财政年份:2023
- 资助金额:
$ 18.19万 - 项目类别:
CO-LEADER: Intervention to Improve Patient-Provider Communication and Medication Adherence among Patients with Systemic Lupus Erythematosus
共同领导者:改善系统性红斑狼疮患者的医患沟通和药物依从性的干预措施
- 批准号:
10772887 - 财政年份:2023
- 资助金额:
$ 18.19万 - 项目类别:
Pharmacy-led Transitions of Care Intervention to Address System-Level Barriers and Improve Medication Adherence in Socioeconomically Disadvantaged Populations
药房主导的护理干预转型,以解决系统层面的障碍并提高社会经济弱势群体的药物依从性
- 批准号:
10594350 - 财政年份:2023
- 资助金额:
$ 18.19万 - 项目类别:
Antiretroviral therapy adherence and exploratory proteomics in virally suppressed people with HIV and stroke
病毒抑制的艾滋病毒和中风患者的抗逆转录病毒治疗依从性和探索性蛋白质组学
- 批准号:
10748465 - 财政年份:2023
- 资助金额:
$ 18.19万 - 项目类别:
Improving medication adherence and disease control for patients with multimorbidity: the role of price transparency tools
提高多病患者的药物依从性和疾病控制:价格透明度工具的作用
- 批准号:
10591441 - 财政年份:2023
- 资助金额:
$ 18.19万 - 项目类别:
Development and implementation of peer-facilitated decision-making and referral support to increase uptake and adherence to HIV pre-exposure prophylaxis in African Caribbean and Black communities in Ontario
制定和实施同行协助决策和转介支持,以提高非洲加勒比地区和安大略省黑人社区对艾滋病毒暴露前预防的接受和依从性
- 批准号:
491109 - 财政年份:2023
- 资助金额:
$ 18.19万 - 项目类别:
Fellowship Programs














{{item.name}}会员




