Using natural language processing to determine predictors of healthy diet and physical activity behavior change in ovarian cancer survivors

使用自然语言处理确定卵巢癌幸存者健康饮食和身体活动行为变化的预测因子

基本信息

  • 批准号:
    10510666
  • 负责人:
  • 金额:
    $ 18.19万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-02-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

ABSTRACT Cancer survivors are a growing population in the United States; more than 16 million currently live in the US and by 2030 this number is expected to exceed 22 million. It is estimated that more than 50 percent of new cancer cases could be eliminated through a combination of healthy behaviors (e.g., physical activity and healthy diet); and cancer survivors are at high risk for developing new and recurrent cancer. Unfortunately, a significant percentage of cancer survivors are not attaining the cancer preventive guidelines of healthy diet and physical activity. In the past few decades, a variety of telephone-based lifestyle interventions have demonstrated effectiveness in helping survivors meet cancer preventive guidelines, however these trials are labor intensive and expensive to deliver, limiting their potential for broad dissemination. We propose to address this hurdle by taking advantage of recent advances in artificial intelligence to reduce the cost and maximize the impact of these much-needed interventions. Machine learning (ML) and Natural Language Processing (NLP) are analytical techniques that automatically learn from direct and indirect patterns in data. We propose to use machine learned algorithms to analyze speech to aid in predicting who may be at risk of poor adoption of healthy lifestyle behaviors. These speech data will come from the Lifestyle Intervention for Ovarian cancer Enhanced Survival (LIVES) study, a telephone-based lifestyle intervention testing whether a diet low in fat and high in vegetables, fruit, and fiber, coupled with increased physical activity will increase time to disease progression in 1200 ovarian cancer survivors who have recently completed treatment, as compared to an attention control. Intervention coaches employed motivational interviewing to elicit behavior change and all calls on the LIVES trial were recorded with repeat assessments of diet, physical activity, patient reported and clinical outcomes. We will use this existing and robust longitudinal data set, which pairs conversational speech data with explicit outcomes, to achieve the following objectives. 1) Develop a ML model to identify patterns in the interactions between coaches and their participants that signal a likelihood of optimal behavior change in diet and physical activity given the comprehensive LIVES data set, utilizing voice recorded calls, demographics, and clinical and patient reported outcomes collected at multiple time points. 2) Decompose the ML model in terms of “intervenable factors”, so that participant affect, coach adherence to the intervention protocol, and other important aspects of the interaction can be individually evaluated for their role in predicting behavior change, as well as adherence to intervention goals. This decomposition will directly enable early and targeted adjustments to intervention plans for individuals, reducing the cost and increasing the efficacy of intervention strategies. ML and NLP methods can produce models that listen to a coaching conversation and automatically predict whether it will result in positive change towards enactment of healthy lifestyle behaviors. Such predictive models would enable more efficient, effective, and individualized lifestyle interventions, the first step towards personalized behavioral medicine.
摘要

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Steven Bethard其他文献

Steven Bethard的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Steven Bethard', 18)}}的其他基金

Extended Methods and Software Development for Health NLP
健康 NLP 的扩展方法和软件开发
  • 批准号:
    10413157
  • 财政年份:
    2016
  • 资助金额:
    $ 18.19万
  • 项目类别:
Extended Methods and Software Development for Health NLP
健康 NLP 的扩展方法和软件开发
  • 批准号:
    10209178
  • 财政年份:
    2016
  • 资助金额:
    $ 18.19万
  • 项目类别:
Extended Methods and Software Development for Health NLP
健康 NLP 的扩展方法和软件开发
  • 批准号:
    10689709
  • 财政年份:
    2016
  • 资助金额:
    $ 18.19万
  • 项目类别:

相似海外基金

I-Corps: Medication Adherence System
I-Corps:药物依从性系统
  • 批准号:
    2325465
  • 财政年份:
    2023
  • 资助金额:
    $ 18.19万
  • 项目类别:
    Standard Grant
Improving Repositioning Adherence in Home Care: Supporting Pressure Injury Care and Prevention
提高家庭护理中的重新定位依从性:支持压力损伤护理和预防
  • 批准号:
    490105
  • 财政年份:
    2023
  • 资助金额:
    $ 18.19万
  • 项目类别:
    Operating Grants
An innovative, AI-driven prehabilitation platform that increases adherence, enhances post-treatment outcomes by at least 50%, and provides cost savings of 95%.
%20创新、%20AI驱动%20康复%20平台%20%20增加%20依从性、%20增强%20治疗后%20结果%20by%20at%20至少%2050%、%20和%20提供%20成本%20节省%20of%2095%
  • 批准号:
    10057526
  • 财政年份:
    2023
  • 资助金额:
    $ 18.19万
  • 项目类别:
    Grant for R&D
CO-LEADER: Intervention to Improve Patient-Provider Communication and Medication Adherence among Patients with Systemic Lupus Erythematosus
共同领导者:改善系统性红斑狼疮患者的医患沟通和药物依从性的干预措施
  • 批准号:
    10772887
  • 财政年份:
    2023
  • 资助金额:
    $ 18.19万
  • 项目类别:
Nuestro Sueno: Cultural Adaptation of a Couples Intervention to Improve PAP Adherence and Sleep Health Among Latino Couples with Implications for Alzheimer’s Disease Risk
Nuestro Sueno:夫妻干预措施的文化适应,以改善拉丁裔夫妇的 PAP 依从性和睡眠健康,对阿尔茨海默病风险产生影响
  • 批准号:
    10766947
  • 财政年份:
    2023
  • 资助金额:
    $ 18.19万
  • 项目类别:
Pharmacy-led Transitions of Care Intervention to Address System-Level Barriers and Improve Medication Adherence in Socioeconomically Disadvantaged Populations
药房主导的护理干预转型,以解决系统层面的障碍并提高社会经济弱势群体的药物依从性
  • 批准号:
    10594350
  • 财政年份:
    2023
  • 资助金额:
    $ 18.19万
  • 项目类别:
Unintrusive Pediatric Logging Orthotic Adherence Device: UPLOAD
非侵入式儿科记录矫形器粘附装置:上传
  • 批准号:
    10821172
  • 财政年份:
    2023
  • 资助金额:
    $ 18.19万
  • 项目类别:
Antiretroviral therapy adherence and exploratory proteomics in virally suppressed people with HIV and stroke
病毒抑制的艾滋病毒和中风患者的抗逆转录病毒治疗依从性和探索性蛋白质组学
  • 批准号:
    10748465
  • 财政年份:
    2023
  • 资助金额:
    $ 18.19万
  • 项目类别:
Improving medication adherence and disease control for patients with multimorbidity: the role of price transparency tools
提高多病患者的药物依从性和疾病控制:价格透明度工具的作用
  • 批准号:
    10591441
  • 财政年份:
    2023
  • 资助金额:
    $ 18.19万
  • 项目类别:
Development and implementation of peer-facilitated decision-making and referral support to increase uptake and adherence to HIV pre-exposure prophylaxis in African Caribbean and Black communities in Ontario
制定和实施同行协助决策和转介支持,以提高非洲加勒比地区和安大略省黑人社区对艾滋病毒暴露前预防的接受和依从性
  • 批准号:
    491109
  • 财政年份:
    2023
  • 资助金额:
    $ 18.19万
  • 项目类别:
    Fellowship Programs
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了