Design-driven engineering of robust mammalian sense-and-respond functions
强大的哺乳动物感知和响应功能的设计驱动工程
基本信息
- 批准号:10510144
- 负责人:
- 金额:$ 1.75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-01 至 2022-04-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAutoimmune DiseasesBasic ScienceBiologicalBiomedical EngineeringBiosensing TechniquesBiosensorCell TherapyCell physiologyCellsClinicClinicalCommunitiesComputer ModelsCuesCustomDevelopmentEngineeringEnvironmentGene DeliveryGeneticGoalsLibrariesMalignant NeoplasmsMedicineOutcomePatientsPerformancePhysiologicalPhysiologyProtein EngineeringReagentRegenerative MedicineTechnologyTherapeuticTranslatingVariantWorkcancer therapycell typecellular engineeringcomputerized toolsdesigndesign and constructioneffective therapyexperiencefrontierimplementation designnovelprogramsreceptorstable cell linesuccesssynthetic biologytool
项目摘要
Project Summary
The ultimate goal of this project is to enable the use of engineered cell therapies to safely and
effectively treat conditions ranging from cancer, to autoimmune disease, to those requiring regenerative
medicine. Engineered cell therapies represent an exciting frontier in medicine, and early successes in the field
of cancer treatment have demonstrated the transformative potential of this approach, enabling the treatment of
patients for whom no existing therapy was effective. However, fully realizing the promise of engineered cell
therapies will require technologies and tools that enable bioengineers to efficiently design, build, and evaluate
customized cellular functions that meet specific clinical needs. While the field of mammalian synthetic biology
has made impressive strides toward this goal, translating basic science to the clinic imposes a new set of
design and engineering challenges. In particular, new experimental technologies and computational tools are
needed to design cell therapies in a way that leads to robust performance—the successful execution of a
therapeutic program despite inevitable biological variability.
To meet this need, this team will develop an integrated suite of new experimental reagents, new
computational tools, and new conceptual understanding to accelerate the implementation of design-driven
medicine by enabling bioengineers to program cells to sense, evaluate, and respond to their environment in
novel, useful, and reliable ways. The team recently developed a synthetic biology technology called MESA
receptor proteins, which enable one to “rewire” how a cell senses features of host physiology. This project
comprises a crucial bridge from an early demonstration of a promising strategy to the development of a true
technology platform that may be readily applied by the bioengineering community to design and construct
novel cell therapies. The goals of this project are informed by the team's substantial experience in engineered
receptor technologies, and this project addresses general challenges in mammalian synthetic biology. The first
Aim is to develop strategies for engineering cellular sensing functions that perform robustly across inevitable
biological variation. This aim comprises computational model-guided design of proteins and genetic
components to make cellular sensing functions more useful for bioengineering. This work will include a
comparison of MESA with other engineered sensing platforms. The second Aim is to develop a library of novel
MESA biosensors that respond to physiologically relevant cues. Outcomes of this aim will include a better
understanding of how to build biosensors, as well as a panel of reagents that enable bioengineers to
immediately employ this technology for therapeutic applications. The third Aim is to evaluate and develop
strategies for implementing engineered biosensing functions in a wide range of cell types, including both stable
cell lines and primary cells, with comparisons across translationally-relevant gene delivery platforms.
项目摘要
该项目的最终目标是使工程细胞疗法的使用能够安全,
有效地治疗从癌症到自身免疫性疾病,再到需要再生的疾病
药工程细胞疗法代表了医学领域令人兴奋的前沿,以及该领域的早期成功
已经证明了这种方法的变革潜力,能够治疗
现有治疗无效的患者。然而,完全实现工程细胞的承诺,
治疗需要技术和工具,使生物工程师能够有效地设计,建造和评估
定制的细胞功能,以满足特定的临床需求。哺乳动物合成生物学领域
在实现这一目标方面取得了令人印象深刻的进展,将基础科学转化为临床,
设计和工程挑战。特别是,新的实验技术和计算工具,
需要设计细胞疗法的方式,导致强大的性能-成功执行一个
尽管不可避免的生物变异性。
为了满足这一需求,该团队将开发一套新的实验试剂,
计算工具和新的概念理解,以加速设计驱动的实施
通过使生物工程师能够编程细胞来感知,评估和响应它们的环境,
新颖、实用、可靠的方法。该团队最近开发了一种名为梅萨的合成生物学技术
受体蛋白质,使人们能够“重新连接”细胞如何感受宿主生理特征。这个项目
包括一个重要的桥梁,从早期展示一个有前途的战略,
技术平台,可以很容易地应用于生物工程界的设计和建设
新型细胞疗法该项目的目标是由团队的丰富经验,在工程
受体技术,该项目解决哺乳动物合成生物学的一般挑战。第一
目的是制定策略,工程细胞传感功能,执行稳健的跨越不可避免的
生物变异这一目标包括蛋白质和遗传学的计算模型指导设计
组件,使细胞传感功能更有用的生物工程。这项工作将包括
梅萨与其他工程传感平台的比较。第二个目标是建立一个小说图书馆
梅萨生物传感器对生理相关线索做出反应。这一目标的成果将包括一个更好的
了解如何构建生物传感器,以及一组试剂,使生物工程师能够
立即将该技术用于治疗应用。第三个目标是评价和发展
在广泛的细胞类型中实施工程生物传感功能的策略,包括稳定的
细胞系和原代细胞,以及翻译相关基因递送平台之间的比较。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Joshua Nathaniel Leonard其他文献
Joshua Nathaniel Leonard的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Joshua Nathaniel Leonard', 18)}}的其他基金
Design-driven engineering of robust mammalian sense-and-respond functions
强大的哺乳动物感知和响应功能的设计驱动工程
- 批准号:
9750223 - 财政年份:2018
- 资助金额:
$ 1.75万 - 项目类别:
Design-driven engineering of robust mammalian sense-and-respond functions
强大的哺乳动物感知和响应功能的设计驱动工程
- 批准号:
9926885 - 财政年份:2018
- 资助金额:
$ 1.75万 - 项目类别:
相似国自然基金
Autoimmune diseases therapies: variations on the microbiome in rheumatoid arthritis
- 批准号:31171277
- 批准年份:2011
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
Effects of maternal immune activation on autoimmune diseases in offsprings
母体免疫激活对后代自身免疫性疾病的影响
- 批准号:
23H02155 - 财政年份:2023
- 资助金额:
$ 1.75万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Autoantibodies and antibody-secreting cells in neurological autoimmune diseases: from biology to therapy
神经性自身免疫性疾病中的自身抗体和抗体分泌细胞:从生物学到治疗
- 批准号:
479128 - 财政年份:2023
- 资助金额:
$ 1.75万 - 项目类别:
Operating Grants
IPP: AUTOIMMUNE DISEASES STATISTICAL AND CLINICAL COORDINATING CENTER (ADSCCC)
IPP:自身免疫性疾病统计和临床协调中心 (ADSCCC)
- 批准号:
10788032 - 财政年份:2023
- 资助金额:
$ 1.75万 - 项目类别:
Biomarkers of vascular endothelial dysfunction in systemic autoimmune diseases: analysis of circulating microRNAs
系统性自身免疫性疾病中血管内皮功能障碍的生物标志物:循环 microRNA 分析
- 批准号:
23K14742 - 财政年份:2023
- 资助金额:
$ 1.75万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
NOVEL HUMORAL AND CELLULAR BIOMARKERS OF AUTOIMMUNE DISEASES CAUSED BY IMMUNOTHERAPY
免疫治疗引起的自身免疫性疾病的新型体液和细胞生物标志物
- 批准号:
10593224 - 财政年份:2023
- 资助金额:
$ 1.75万 - 项目类别:
Structural mechanisms of autoimmune diseases targeting cys-loop receptors
针对半胱氨酸环受体的自身免疫性疾病的结构机制
- 批准号:
10864719 - 财政年份:2023
- 资助金额:
$ 1.75万 - 项目类别:
Developing non-immunosuppressive immune-based therapeutics for targeted treatment of autoimmune diseases
开发非免疫抑制性免疫疗法来靶向治疗自身免疫性疾病
- 批准号:
10586562 - 财政年份:2023
- 资助金额:
$ 1.75万 - 项目类别:
Regulation of autoimmune diseases by PTPN22 phosphatase
PTPN22磷酸酶对自身免疫性疾病的调节
- 批准号:
23K06589 - 财政年份:2023
- 资助金额:
$ 1.75万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Decipher and target GABA metabolism and GABA receptor-mediated signaling in autoimmune diseases
破译并靶向自身免疫性疾病中的 GABA 代谢和 GABA 受体介导的信号传导
- 批准号:
10623380 - 财政年份:2023
- 资助金额:
$ 1.75万 - 项目类别:
Targeting the long isoform of the prolactin receptor to treat autoimmune diseases and B-cell malignancies
靶向催乳素受体的长亚型来治疗自身免疫性疾病和 B 细胞恶性肿瘤
- 批准号:
10735148 - 财政年份:2023
- 资助金额:
$ 1.75万 - 项目类别: