Multiscale Computational Oncology Research Core

多尺度计算肿瘤学研究核心

基本信息

项目摘要

MULTISCALE COMPUTATIONAL ONCOLOGY RESEARCH CORE (M-CORE) – Abstract The Multiscale Computational Oncology Research Core (M-CORE) provides computational oncology expertise from initial experimental design and power studies to ongoing data generation and analysis to data deposition and sharing for single-cell and genomics data. Core Leader Dr. Fertig is a leader in single-cell multi- omics for applications to cancer, with a particular focus on translational pancreatic cancer research applications. The M-CORE will support high-throughput data analysis in all three Tri-State Pancreatic Adenocarcinoma TBEL (Tri-PACT) Center Projects and Collaborative Projects. Methods will be applied to bridge spatial and temporal scales to identify cell intrinsic mechanisms underlying pre-malignant lesions progression into invasive cancers. These will be extended to analyze cell extrinsic, intercellular interactions that mediate malignancy development and tumor initiation incorporating new three-dimensional imaging technologies from Tri-PACT. Many of these methods were recently developed by the Core leader, and new algorithms will be developed specifically to meet the TBEL needs and provide synergy across Projects. Research Projects will be testbeds for new single-cell methods for dynamic spatial processes and novel imaging technologies, and computational Collaborative Projects will benefit from M-CORE resources. Standardization in the Core will harmonize data to enable meta- analyses between biological models and human precursor lesions, biological mechanisms from the Projects, and novel mechanisms associated with precancer through cross-disease analysis in the broader TBEL consortium in collaboration with the Coordinating and Data Management Center (CDMC). The Core Leader will participate in all regular Center meetings and collaborate closely with the TBEL CDMC to ensure ample computational resources for new research directions. The Core will partner with the TBEL CDMC to assist with data standards and harmonization, data validation, data wrangling, and overall data deposition, data and software sharing, and genomic data sharing. In summary, the M-CORE will support the overall TBEL research objectives by providing computational methods to characterize the mechanisms of malignancy initiation and progression into invasive tumors; to analyze spatial and temporal data to infer interactions and crosstalk between pre-malignant cells with stromal cells, and other cells in the microenvironment; and to perform integrative analyses to promote Tri-PACT and Consortium synergy by identifying shared mechanisms.
多尺度计算肿瘤学研究核心(M-CORE) -摘要

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Elana Judith Fertig其他文献

Elana Judith Fertig的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Elana Judith Fertig', 18)}}的其他基金

Data Analysis Core
数据分析核心
  • 批准号:
    10556891
  • 财政年份:
    2022
  • 资助金额:
    $ 24.55万
  • 项目类别:
Interrogation of the Impact of Selection on the Evolution of Human Pancreatic Cancer Precursor Lesions
探究选择对人类胰腺癌前驱病变进化的影响
  • 批准号:
    10703414
  • 财政年份:
    2022
  • 资助金额:
    $ 24.55万
  • 项目类别:
Data Analysis Core
数据分析核心
  • 批准号:
    10673121
  • 财政年份:
    2022
  • 资助金额:
    $ 24.55万
  • 项目类别:
Interrogation of the Impact of Selection on the Evolution of Human Pancreatic Cancer Precursor Lesions
探究选择对人类胰腺癌前驱病变进化的影响
  • 批准号:
    10556018
  • 财政年份:
    2022
  • 资助金额:
    $ 24.55万
  • 项目类别:
Multiscale Computational Oncology Research Core
多尺度计算肿瘤学研究核心
  • 批准号:
    10708204
  • 财政年份:
    2022
  • 资助金额:
    $ 24.55万
  • 项目类别:
Single-cell and imaging data integration software to spatially resolve the tumor microenvironment
用于空间解析肿瘤微环境的单细胞和成像数据集成软件
  • 批准号:
    10457312
  • 财政年份:
    2020
  • 资助金额:
    $ 24.55万
  • 项目类别:
Single-cell and imaging data integration software to spatially resolve the tumor microenvironment
用于空间解析肿瘤微环境的单细胞和成像数据集成软件
  • 批准号:
    10058504
  • 财政年份:
    2020
  • 资助金额:
    $ 24.55万
  • 项目类别:
Dynamical Models of Cetuximab Resistance in HNSCC Based on Serial Genomics Data
基于系列基因组数据的 HNSCC 西妥昔单抗耐药动态模型
  • 批准号:
    8754812
  • 财政年份:
    2014
  • 资助金额:
    $ 24.55万
  • 项目类别:
Dynamical Models of Cetuximab Resistance in HNSCC Based on Serial Genomics Data
基于系列基因组数据的 HNSCC 西妥昔单抗耐药动态模型
  • 批准号:
    9325461
  • 财政年份:
    2014
  • 资助金额:
    $ 24.55万
  • 项目类别:
Dynamical Models of Cetuximab Resistance in HNSCC Based on Serial Genomics Data
基于系列基因组数据的 HNSCC 西妥昔单抗耐药动态模型
  • 批准号:
    8928069
  • 财政年份:
    2014
  • 资助金额:
    $ 24.55万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 24.55万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 24.55万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 24.55万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 24.55万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 24.55万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 24.55万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 24.55万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 24.55万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 24.55万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 24.55万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了