Data Science Core
数据科学核心
基本信息
- 批准号:10516499
- 负责人:
- 金额:$ 40.58万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2027-07-31
- 项目状态:未结题
- 来源:
- 关键词:AlgorithmsAnatomyAnimalsArchivesArtificial IntelligenceAttentionBlood VolumeBrainBrain imagingCharacteristicsClassificationCodeCollaborationsComputer softwareDataData FilesData ScienceData Science CoreData ScientistData SetData Storage and RetrievalData StoreElectroencephalographyGoalsHumanImageIndividualInformation RetrievalInfrastructureInvestigationLeadLearningLinkLiquid substanceMagnetic Resonance ImagingMeasurementMeasuresMetadataMethodsModernizationMusNoiseParticipantPatternPublicationsReadingRecording of previous eventsResearchResourcesRunningSamplingScientistShapesSleepSoftware ToolsSuggestionSystemTimeTrainingUncertaintyUniversitiesVariantViralVisualizationWorkWritinganatomic imagingbasecerebrospinal fluid flowcode developmentcomputational platformdata accessdata infrastructuredata sharingdata toolsdoctoral studentexperienceexperimental studyfile formathemodynamicsimage processingimprovedin vivoinnovationinstrumentlarge datasetsmachine learning algorithmmathematical modelmembermultimodal datamultimodalityneural circuitneuroregulationnovelopen sourceorganizational structureprogramsrelating to nervous systemrepositorysearchable databasesignal processingsimulationsolutestatistical and machine learningsupercomputersynergismtooltwo-photonuser-friendlyvirus core
项目摘要
Abstract, Data Science Core
The goal of this proposal is to characterize and quantify how neural circuits control cerebrospinal fluid (CSF) flow
and solute clearance during sleep and wake, in both mice and humans. Achieving that goal will require combining
multimodal data from mathematical models and various experiments in both species. The Data Science Core
will provide the essential infrastructure and produce innovative data methods to enable powerful synergy among
the Projects. First, because the Projects will produce enormous data sets, and because the data will be
multimodal (MRI, two-photon imaging, simulation results, EEG, and more), productive collaboration will require
careful attention to storing, organizing, processing, analyzing, and internally sharing the data. Aim 1 is to provide
data infrastructure and staffing for seamless integration of all Projects, for synergistic code development and
sharing, and for rapid analysis of multimodal data via efficient workflows, always leveraging existing best
practices. Second, discovering the causal links among neural control, CSF flow, and solute clearance will require
tools and analyses that do not yet exist. Aim 2 is to build transformative tools leveraging quantitative, data-driven
methods to measure CSF flow, its drivers, their neural control mechanisms, and the resulting efflux. Third, the
novel data and tools produced in Projects 1-4 will have potential to advance the field, enabling a range of new
scientific questions, especially if they are disseminated widely. Aim 3 is to document the software tools we
develop, annotate the data we produce, and share both publicly. The Data Science Core will build on existing
methods and tools previously developed by the co-PIs, take advantage of best practices in the field, and combine
the expertise of experienced data scientists to build novel tools. Documented code will be shared via GitHub.
We will use a two-tiered system for sharing data internally, in which each Project will leverage their existing data
workflows and keep some data locally; meanwhile, data shared among Projects will be stored on the BlueHive
supercomputer at the University of Rochester, available to all U19 participants. We will develop a clear
organizational structure for shared data, storing metadata in sidecar files and implementing a searchable
database to facilitate collaboration and interaction among the Projects. We will keep a searchable stock list of
tools provided by the Virus Core, along with delivery times and histories. Annotated data will be shared publicly
via repositories upon publication. A full-time data scientist will be employed to lead day-to-day Core activities,
along with two PhD students.
摘要,数据科学核心
这项提案的目标是表征和量化神经回路如何控制脑脊液(CSF)流量
和溶质清除率在睡眠和清醒,在小鼠和人类。实现这一目标需要结合
来自数学模型和两个物种的各种实验的多峰数据。数据科学核心
将提供必要的基础设施,并产生创新的数据方法,使强大的协同作用,
项目。首先,因为项目将产生大量数据集,而且这些数据将
多模式(MRI、双光子成像、模拟结果、EEG等),生产性协作将需要
仔细注意存储、组织、处理、分析和内部共享数据。目标1:提供
数据基础设施和人员配备,用于所有项目的无缝集成,用于协同代码开发,
共享,并通过高效的工作流程快速分析多模式数据,始终利用现有的最佳
实践其次,发现神经控制、脑脊液流动和溶质清除之间的因果关系需要
这些工具和分析还不存在。目标2是利用量化的、数据驱动的
测量CSF流量、其驱动因素、其神经控制机制以及由此产生的外排的方法。三是
项目1-4中产生的新数据和工具将有可能推动该领域的发展,
科学问题,特别是如果它们被广泛传播。目标3是记录我们使用的软件工具
开发、注释我们产生的数据,并公开共享。数据科学核心将建立在现有的
联合PI以前开发的方法和工具,利用该领域的最佳实践,并将联合收割机
经验丰富的数据科学家的专业知识来构建新颖的工具。文档代码将通过GitHub共享。
我们将使用两层系统在内部共享数据,其中每个项目将利用其现有数据
工作流,并在本地保存一些数据;同时,项目之间共享的数据将存储在BlueHive上
超级计算机在罗切斯特大学,提供给所有U19的参与者。我们将制定一个明确的
共享数据的组织结构,将元数据存储在Sidecar文件中,并实现可搜索的
数据库,以促进项目之间的合作和互动。我们将保留一个可搜索的库存清单,
病毒核心提供的工具,沿着交付时间和历史记录。注释数据将公开共享
通过发布后的存储库。一名全职的数据科学家将被雇用来领导日常的核心活动,
沿着的还有两个博士生。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Douglas H Kelley其他文献
Hydraulic resistance of three-dimensional pial perivascular spaces in the brain
大脑三维软脑膜血管周围空间的液压阻力
- DOI:
10.21203/rs.3.rs-3411983/v1 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
K. Boster;Jiatong Sun;Jessica K. Shang;Douglas H Kelley;John H. Thomas - 通讯作者:
John H. Thomas
Douglas H Kelley的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Douglas H Kelley', 18)}}的其他基金
Project 1: Modeling brain-state-dependent fluid flow and clearance in mice and humans
项目 1:模拟小鼠和人类大脑状态依赖性液体流动和清除
- 批准号:
10673158 - 财政年份:2022
- 资助金额:
$ 40.58万 - 项目类别:
Project 1: Modeling brain-state-dependent fluid flow and clearance in mice and humans
项目 1:模拟小鼠和人类大脑状态依赖性液体流动和清除
- 批准号:
10516501 - 财政年份:2022
- 资助金额:
$ 40.58万 - 项目类别:
CRCNS: Waste-clearance flows in the brain measured using physics-informed neural network
CRCNS:使用物理信息神经网络测量大脑中的废物清除流量
- 批准号:
10706594 - 财政年份:2022
- 资助金额:
$ 40.58万 - 项目类别:
CRCNS: Waste-clearance flows in the brain measured using physics-informed neural network
CRCNS:使用物理信息神经网络测量大脑中的废物清除流量
- 批准号:
10613222 - 财政年份:2022
- 资助金额:
$ 40.58万 - 项目类别:
相似海外基金
Linking Epidermis and Mesophyll Signalling. Anatomy and Impact in Photosynthesis.
连接表皮和叶肉信号传导。
- 批准号:
EP/Z000882/1 - 财政年份:2024
- 资助金额:
$ 40.58万 - 项目类别:
Fellowship
Digging Deeper with AI: Canada-UK-US Partnership for Next-generation Plant Root Anatomy Segmentation
利用人工智能进行更深入的挖掘:加拿大、英国、美国合作开发下一代植物根部解剖分割
- 批准号:
BB/Y513908/1 - 财政年份:2024
- 资助金额:
$ 40.58万 - 项目类别:
Research Grant
Simultaneous development of direct-view and video laryngoscopes based on the anatomy and physiology of the newborn
根据新生儿解剖生理同步开发直视喉镜和视频喉镜
- 批准号:
23K11917 - 财政年份:2023
- 资助金额:
$ 40.58万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Genetics of Extreme Phenotypes of OSA and Associated Upper Airway Anatomy
OSA 极端表型的遗传学及相关上呼吸道解剖学
- 批准号:
10555809 - 财政年份:2023
- 资助金额:
$ 40.58万 - 项目类别:
computational models and analysis of the retinal anatomy and potentially physiology
视网膜解剖学和潜在生理学的计算模型和分析
- 批准号:
2825967 - 财政年份:2023
- 资助金额:
$ 40.58万 - 项目类别:
Studentship
Computational comparative anatomy: Translating between species in neuroscience
计算比较解剖学:神经科学中物种之间的翻译
- 批准号:
BB/X013227/1 - 财政年份:2023
- 资助金额:
$ 40.58万 - 项目类别:
Research Grant
Doctoral Dissertation Research: Social and ecological influences on brain anatomy
博士论文研究:社会和生态对大脑解剖学的影响
- 批准号:
2235348 - 财政年份:2023
- 资助金额:
$ 40.58万 - 项目类别:
Standard Grant
Development of a novel visualization, labeling, communication and tracking engine for human anatomy.
开发一种新颖的人体解剖学可视化、标签、通信和跟踪引擎。
- 批准号:
10761060 - 财政年份:2023
- 资助金额:
$ 40.58万 - 项目类别:
Understanding the functional anatomy of nociceptive spinal output neurons
了解伤害性脊髓输出神经元的功能解剖结构
- 批准号:
10751126 - 财政年份:2023
- 资助金额:
$ 40.58万 - 项目类别:
Anatomy and functions of LTP interactomes and their relationship to small RNA signals in systemic acquired resistance
LTP相互作用组的解剖和功能及其与系统获得性耐药中小RNA信号的关系
- 批准号:
BB/X013049/1 - 财政年份:2023
- 资助金额:
$ 40.58万 - 项目类别:
Research Grant