Characterizing long-range propagation of injury information during regeneration
表征再生过程中损伤信息的远程传播
基本信息
- 批准号:10520024
- 负责人:
- 金额:$ 7.18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-12-29 至 2023-12-28
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsAmputationAnatomyAnimalsAnteriorAreaBioinformaticsBiologicalBiological ModelsBiophysicsBrainCell physiologyCellsComplementComplexComputer ModelsDataDecision MakingDefectDepositionDiagnosticDistalDistantDugesia (turbellarian)ElementsEventExcisionExhibitsFluorescent in Situ HybridizationFoundationsGene ExpressionGenesGrowthHeadHumanIndividualInjuryKnowledgeLegLibrariesLimb structureLocationMalignant neoplasm of brainMessenger RNAMinorModelingMolecularMolecular BiologyMolecular ComputationsMolecular GeneticsMorphogenesisMorphologyMusMuscleNatural regenerationOperative Surgical ProceduresOrganOutcomePatientsPeripheral Nervous SystemPhysiologicalPlanariansPlatyhelminthsPlayProcessProliferatingRNARNA InterferenceRanaRegenerative MedicineRegenerative responseRepair ComplexResearch PersonnelResolutionRestRoleSalamanderShapesSideSignal TransductionSiteSpinal CordStructureSystemTailTechniquesTestingTimeTissuesTranscriptTranslatingWorkappendagebioelectricitybiological adaptation to stressbiophysical modelbiophysical techniquesbody systembrain repaircandidate identificationcareerconstructivismdifferential expressionexperiencefascinategain of functionimprovedin vivoinformation modelinterdisciplinary approachknock-downloss of functionminimally invasivemodel organismmolecular markerneuralnew growthnext generationnovelnovel strategiesorgan repairphysiologic modelregenerativeregenerative approachregenerative biologyrepairedresponsestem cell differentiationstem cellssupport networktissue injurytissue regenerationtissue repairtraining opportunitytranscriptome sequencingtranscriptomicsworking groupwoundwound bedwound healingwound response
项目摘要
Project Summary/Abstract
Some animals can regenerate complex organs or appendages after damage. Significant progress has been made on
the molecular biology of stem cell differentiation, which helps explain the origin of the cellular building blocks of new
tissue. However, major knowledge gaps remain about how new growth is coordinated with the rest of the body with respect
to size, shape, and location, and how the whole system knows what's missing and when it is complete (so that it can stop
proliferation and remodeling). This project takes advantage of the highly regenerative and tractable model system – the
planarian Dugesia japonica – which serves as a proof of principle that repair of complex brains, peripheral nervous systems,
muscle, and gut is possible. Most of the recent advances in planarian regeneration have focused on the wound, new growth,
and stem cell pool. However, work in the Levin lab on frog leg regeneration and brain repair, and other groups working in
mice, have suggested the presence of long-range signals that let healthy tissue know that damage has occurred and what it
was. For example, when a frog leg is amputated, cells in the opposite side (untouched) leg exhibit a dramatic bioelectric
depolarization at the same location as the amputation plane that occurred in the other leg. Similarly, when a frog limb is
amputated and treated, the brain changes gene expression profiles that are different depending on the treatment applied.
These kinds of data suggest that important information about anatomical defects may propagate to other organs and help
coordinate system-level integrated responses. They also raise the possibility of translating this knowledge to biomedicine
as techniques for surrogate site diagnostics and treatments of cells at some distance from a difficult location in the patient
(as has been shown in the frog model for brain repair and cancer normalization by the host lab). However, such long-range
signals during regeneration are very poorly characterized. Here, I propose to use the planarian model to 1) discover a reliable
molecular marker of long-range damage information, and 2) construct and test a quantitative, biophysical model of how the
information propagates. Specifically, I will use a candidate approach and an unbiased transcriptomic approach to ask which
genes are up/down-regulated in the head of the flatworm when the tail is amputated, and vice-versa. Using subtractive
analysis, we will look for transcripts that specifically reveal that one end of the worm has detected what is missing at the
other. I will incorporate this knowledge into the existing body of work on neural and non-neural bioelectric signaling, and
molecular-genetic cascades, in a constructivist biophysical model of planarian long-range signaling. This model will be
analyzed for specific predictions, and I will then validate those predictions and improve the model. This work will allow
me to augment my background of molecular biology with novel computational and biophysical approaches and set me up
for an independent career in pursuing long-range diagnostics and functional repair signals in biomedical contexts.
项目总结/文摘
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Devon Davidian其他文献
Devon Davidian的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Devon Davidian', 18)}}的其他基金
Characterizing long-range propagation of injury information during regeneration
表征再生过程中损伤信息的远程传播
- 批准号:
10312352 - 财政年份:2021
- 资助金额:
$ 7.18万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 7.18万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 7.18万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 7.18万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 7.18万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 7.18万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 7.18万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 7.18万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 7.18万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 7.18万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 7.18万 - 项目类别:
Research Grant