A framework to integrate live-cell imaging with single-cell sequencing and learn how cells adapt to new environments

将活细胞成像与单细胞测序相结合并了解细胞如何适应新环境的框架

基本信息

  • 批准号:
    10530677
  • 负责人:
  • 金额:
    $ 8.17万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-12-01 至 2024-11-30
  • 项目状态:
    已结题

项目摘要

Abstract Exposing cancer cells to a new environment typically influences their growth. For some cells, a moderate growth inhibition is followed by adaptation and return to normal growth rates. Others initially experience a near-complete cytostatic phenotype, only to explode in their growth during later generations, reaching growth rates well beyond baseline. This implies that one can reach opposite conclusions about the relative fitness of two cell lineages, solely depending on timing of measurement. This has implications for the time window of therapeutic success, in light of the fact that virtually all pre-clinical drug screening studies measure growth rate at a single, well defined timepoint – typically 72 hours after exposure. Despite this shortcoming, measurements of cell fitness at multiple timepoints are impractical for large-scale studies. Our long-term goal is the development of a new class of temporal biomarkers that extrapolate from a cell's transcriptome how fit its descendants will be over multiple generations. As a next step towards this goal we propose a feasibility study to collect training data of su!cient temporal reach and cellular resolution to evaluate the predictability of cell fitness. With a broad record of integrating various omics- and imaging platforms and as the developers of widely deployed drug response metrics, our team brings complementary expertise to integrate live-cell imaging with single cell sequencing for deep learning. We will record how cells divide, migrate and die, linking the recorded phenotypic di"erences between cells to di"erences between their transcriptomes. Aim 1 will use live-cell imaging to characterize the cell cycle of cancer cell clones as they adapt to new environments. Hereby we define a growth condition as the combination between founding cell and micro-environment. We hypothesize that time emphasizes di"erences between growth conditions, i.e. that cell cycle progression profiles from distinct growth conditions diverge as their cells converge on a specific path of adaptation. This temporal evolution of cell adaptation will inform which generation is optimal for single-cell RNA sequencing, namely when cell counts are su!ciently high, but the path of adaptation is not yet phenotypically evident. In aim 2 we will test the potential of the transcriptome to predict this path. To achieve this we will use a three-layered approach to map sequenced- and imaged cells in-silico. Hereby biological variability – emerging from multiple growth conditions – acts as an additional barcode during sequencing. This linking will not only match the sequenced cell's transcriptome to the one phenotype of the corresponding imaged cell, but also to adaptive phenotypes of all its ancestors. The outcome of these two aims will be training data to learn: (i) whether a snapshot of a transcriptome has the potential to forecast speed and success rate of cell cycle progression; (ii) the temporal limitations of such predictions and (iii) how much more data will be needed to train a deep neural network to make such forecasts. Integration with live-cell imaging opens the door to truly leverage the suitability of single cell sequencing for deep learning in a new way – not for solving technical challenges like segmentation and tracking, but for interpretation of genomic information. We aim for our e"orts to reduce the one-order-of-magnitude temporal chasm between in-vitro cancer cell adaptations and the time required for clinically relevant phenotypes to emerge. 2
摘要 将癌细胞暴露在新的环境中,通常是在fl中,可以促进它们的生长。对于一些细胞来说,适度的生长 抑制之后是适应,并恢复正常的生长速度。其他人最初体验到的是近乎完成的 细胞抑制表型,只是在后代中爆炸式增长,达到远远超过 基线。这意味着,人们可以对两个细胞系的相对fi完整性得出相反的结论 取决于测量的时间。鉴于以下情况,这对治疗成功的时间窗口有影响 事实上,几乎所有的临床前药物筛选研究都在一个单独的、良好的fiNed时间点测量增长率 -通常在暴露后72小时。尽管有这个缺点,在多个时间点对细胞fi完整性的测量 对于大规模研究来说是不切实际的。我们的长期目标是开发一类新的时间生物标记物 这从细胞的转录组推断fi对其后代的影响将跨越多个世代。作为下一个 为了达到这一目标,我们提出了一项可行性研究,以收集较早的时间广度和细胞训练数据 分辨率,以评估细胞fi的可预测性。在整合各种组学和成像技术方面有着广泛的记录 作为广泛部署的药物反应指标的开发者,我们的团队带来了互补的专业知识 将活细胞成像与单细胞测序相结合,进行深度学习。我们将记录细胞如何分裂、迁移和 Die,将记录的细胞之间的表型差异与它们的转录体之间的差异联系起来。目标1将 使用活细胞成像来表征癌细胞克隆适应新环境时的细胞周期。特此 作为创始细胞和微环境的结合体,我们将其定义为生长条件(fiNe)。我们假设 时间强调不同生长条件之间的差异,即细胞周期进程促进了fi的不同生长 当它们的细胞汇聚在特定的fic适应路径上时,条件就会不同。细胞适应的这种时间进化将 告知哪一代对于单细胞RNA测序是最佳的,即当细胞计数很高时,但 适应的路径还不明显。在目标2中,我们将测试转录组预测 这条路。为了实现这一点,我们将使用三层方法在电子计算机中映射排序和成像的细胞。特此 生物变异性--出现在多种生长条件下--在测序过程中充当额外的条形码。这 链接不仅将测序细胞的转录组与相应成像细胞的一种表型相匹配, 而且还与其所有祖先的适应性表型有关。这两个目标的结果将是要学习的训练数据:(I) 转录组的快照是否有可能预测细胞周期进程的速度和成功率; 这种预测的时间限制以及(Iii)需要多少数据才能训练一个深度神经网络 做出这样的预测。与活细胞成像的集成为真正利用单细胞成像的适用性打开了大门 以一种新的方式进行深度学习的排序-不是为了解决分割和跟踪等技术挑战,而是为了 基因组信息的解释。我们的目标是减少一个数量级的颞部鸿沟 在体外癌细胞适应和临床相关表型出现所需的时间之间。 2.

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Noemi Andor其他文献

Noemi Andor的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Noemi Andor', 18)}}的其他基金

Engineering model-based systems to monitor and steer subclonal dynamics
基于工程模型的系统来监测和引导亚克隆动态
  • 批准号:
    10633383
  • 财政年份:
    2023
  • 资助金额:
    $ 8.17万
  • 项目类别:
Characterizing cytotoxic therapy induced shifts in the cost-to-benefit ratio of high ploidy
细胞毒疗法引起高倍性成本效益比变化的特征
  • 批准号:
    10688196
  • 财政年份:
    2022
  • 资助金额:
    $ 8.17万
  • 项目类别:
Characterizing cytotoxic therapy induced shifts in the cost-to-benefit ratio of high ploidy
细胞毒疗法引起高倍性成本效益比变化的特征
  • 批准号:
    10521654
  • 财政年份:
    2022
  • 资助金额:
    $ 8.17万
  • 项目类别:
A framework to integrate live-cell imaging with single-cell sequencing and learn how cells adapt to new environments
将活细胞成像与单细胞测序相结合并了解细胞如何适应新环境的框架
  • 批准号:
    10337650
  • 财政年份:
    2021
  • 资助金额:
    $ 8.17万
  • 项目类别:
A clone's genomic stability as biomarker of its DNA-damage resilience
克隆的基因组稳定性作为其 DNA 损伤恢复能力的生物标志物
  • 批准号:
    10015210
  • 财政年份:
    2017
  • 资助金额:
    $ 8.17万
  • 项目类别:
A clone's genomic stability as biomarker of its DNA-damage resilience
克隆的基因组稳定性作为其 DNA 损伤恢复能力的生物标志物
  • 批准号:
    10224800
  • 财政年份:
    2017
  • 资助金额:
    $ 8.17万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了