Biophysical modeling of the functional MRI signal through parametric variations in neuronal activation and blood vessel anatomy using realistic synthetic microvascular networks
使用真实的合成微血管网络,通过神经元激活和血管解剖的参数变化对功能性 MRI 信号进行生物物理建模
基本信息
- 批准号:10531274
- 负责人:
- 金额:$ 7.75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-12-01 至 2023-11-30
- 项目状态:已结题
- 来源:
- 关键词:AlgorithmsAnatomyAnimal ModelAnimalsAreaBRAIN initiativeBackBiophysicsBloodBlood VesselsBlood flowBrainBrain MappingDataDependenceEvolutionExperimental DesignsFellowshipFunctional Magnetic Resonance ImagingFutureGeometryGoalsHumanHuman VolunteersJointsKnowledgeMeasurableMeasurementMeasuresMethodsMicroscopicMicroscopyMissionModelingModernizationMonitorMusNeuronsOutcomePatternPhysicsPhysiologyPostdoctoral FellowPublishingRegulationReportingResearchResearch PriorityResolutionSeriesShapesSignal TransductionSiteStimulusTechniquesTechnologyTestingTimeTissuesVariantVascular SystemWorkbiophysical modelblood oxygen level dependentblood oxygenation level dependent responsebrain tissuecomputer frameworkdata acquisitiondensityexperimental studyhemodynamicsimaging studyimprovedin vivoneuralneuroimagingneuronal patterningnoveloptical imagingoxygen transportpredictive modelingresponsesimulationspatiotemporaltool
项目摘要
The most widespread tool for measuring brain activity noninvasively in humans is functional magnetic resonance
imaging (fMRI), which typically tracks changes in blood flow and oxygenation using the blood-oxygenation-level-
dependent (BOLD) signal. Although BOLD is an indirect measure of neural firing, it has been shown to be a
faithful measure of brain activation, yet the details of brain vascular anatomy and physiology are known to
influence all fMRI signals including BOLD. Recently, invasive optical imaging studies in animals demonstrated
that the changes in blood flow regulation occurring alongside neuronal activity are far more precise than
previously believed, indicating fMRI can be a faithful representation of neuronal activity at fine spatial and
temporal scales. Recent biophysical simulations have further demonstrated how the microvascular network, and
the vascular response to neural activity, can influence fMRI signals in humans, suggesting that modeling can
help improve fMRI interpretation. We propose to extend this work through a series of biophysical simulations in
which we will parametrically vary vascular anatomy, neuronal activity, and the vascular response to neuronal
activity then simulate the resulting BOLD responses to characterize these influences on fMRI. We hypothesize
that the specifics of the vascular anatomy and neuronal activity patterns will both have measurable effects on
the fMRI signal and that our modeling framework can predict these influences—which can improve inferences
of neural activity from fMRI. This approach is only now possible due to the availability of sufficiently-large-scale
microscopy data, our highly efficient computational framework, and our novel vascular synthesis algorithm.
For this work we will extend our new blood flow and oxygen transport framework to simulate vasomotive
responses to neuronal activity, then incorporate MR physics to generate the corresponding BOLD signals. Our
modeling platform provides unique capabilities: synthesis of realistic, large-scale vascular networks with fully
controllable geometry, density, and topology; and robust simulations of vascular systems far larger than ever
attempted. This will allow for accurate, efficient calculations at a sufficient scale to generate meaningful BOLD
responses that can be related to human fMRI data. We will test whether other aspects of the hemodynamic
response may provide more faithful representations of neuronal activity. Finally, we will test our model predictions
against empirical data with a simple, high-resolution human fMRI experiment. This work spans four Aims. In Aim
1 we compare four candidate “scenarios” describing the vascular response to neural activity. In Aim 2 we test
the dependence BOLD on vascular anatomy by synthesizing large-scale vascular networks. In Aim 3 we test
dependence of patterns of neuronal activity on BOLD by simulating systematically varying spatiotemporal
patterns of neuronal activity. In Aim 4 we test model predictions through a high-resolution human fMRI
experiment measuring BOLD responses to parametrically varied neuronal activity patterns. The outcome of this
work will be a characterization of fMRI signal dependence on factors that cannot be measured in humans in vivo.
非侵入性测量人类大脑活动最广泛的工具是功能磁共振
成像(FMRI),通常使用血氧水平来跟踪血流和氧合的变化-
依赖(粗体)信号。尽管BOLD是神经放电的间接测量,但它已被证明是一种
大脑活动的忠实测量,然而脑血管解剖和生理学的细节是已知的
影响所有fMRI信号,包括BOLD。最近,对动物的侵入性光学成像研究表明
与神经元活动同时发生的血流调节的变化远比
以前认为,功能磁共振成像可以忠实地反映神经元在精细空间和
时间尺度。最近的生物物理模拟进一步证明了微血管网络是如何
血管对神经活动的反应,可以影响人类的fMRI信号,这表明建模可以
帮助改进功能磁共振成像解释。我们建议通过一系列生物物理模拟来扩展这项工作
我们将从参数上改变血管解剖、神经元活动和血管对神经元的反应。
然后,活动模拟由此产生的大胆反应,以表征这些对功能磁共振的影响。我们假设
血管解剖和神经元活动模式的细节都将对
FMRI信号,我们建模框架可以预测这些影响,这可以改进推断
功能性核磁共振的神经活动。这种方法现在才有可能,因为有了足够大规模的
显微数据,我们的高效计算框架,以及我们新的血管合成算法。
在这项工作中,我们将扩展我们的新的血流和氧气运输框架来模拟血管运动
对神经元活动的反应,然后结合磁共振物理学产生相应的大胆信号。我们的
建模平台提供独特的功能:合成逼真、大规模的血管网络,并完全
可控的几何、密度和拓扑;以及对比以往任何时候都大得多的血管系统的强大模拟
已尝试。这将允许以足够的比例进行准确、高效的计算,以生成有意义的粗体
可以与人类功能磁共振数据相关的反应。我们将测试血液动力学的其他方面
反应可能会更真实地代表神经元的活动。最后,我们将测试我们的模型预测
通过一个简单、高分辨率的人体功能磁共振实验来对照经验数据。这项工作跨越了四个目标。在AIM
1我们比较了四种描述血管对神经活动的反应的候选“情景”。在目标2中,我们测试
通过合成大规模的血管网络,大胆地依赖血管解剖。在目标3中,我们测试
通过模拟系统变化的时空变化研究神经元活动模式对BOLD的依赖性
神经元活动的模式。在目标4中,我们通过高分辨率人体功能磁共振成像来测试模型预测
实验测量对参数不同的神经元活动模式的大胆反应。这样做的结果是
工作将是表征fMRI信号对无法在人体内测量的因素的依赖性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Grant Hartung其他文献
Grant Hartung的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Grant Hartung', 18)}}的其他基金
Biophysical modeling of the functional MRI signal through parametric variations in neuronal activation and blood vessel anatomy using realistic synthetic microvascular networks
使用真实的合成微血管网络,通过神经元激活和血管解剖的参数变化对功能性 MRI 信号进行生物物理建模
- 批准号:
10323249 - 财政年份:2020
- 资助金额:
$ 7.75万 - 项目类别:
相似海外基金
Linking Epidermis and Mesophyll Signalling. Anatomy and Impact in Photosynthesis.
连接表皮和叶肉信号传导。
- 批准号:
EP/Z000882/1 - 财政年份:2024
- 资助金额:
$ 7.75万 - 项目类别:
Fellowship
Digging Deeper with AI: Canada-UK-US Partnership for Next-generation Plant Root Anatomy Segmentation
利用人工智能进行更深入的挖掘:加拿大、英国、美国合作开发下一代植物根部解剖分割
- 批准号:
BB/Y513908/1 - 财政年份:2024
- 资助金额:
$ 7.75万 - 项目类别:
Research Grant
Simultaneous development of direct-view and video laryngoscopes based on the anatomy and physiology of the newborn
根据新生儿解剖生理同步开发直视喉镜和视频喉镜
- 批准号:
23K11917 - 财政年份:2023
- 资助金额:
$ 7.75万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Genetics of Extreme Phenotypes of OSA and Associated Upper Airway Anatomy
OSA 极端表型的遗传学及相关上呼吸道解剖学
- 批准号:
10555809 - 财政年份:2023
- 资助金额:
$ 7.75万 - 项目类别:
computational models and analysis of the retinal anatomy and potentially physiology
视网膜解剖学和潜在生理学的计算模型和分析
- 批准号:
2825967 - 财政年份:2023
- 资助金额:
$ 7.75万 - 项目类别:
Studentship
Computational comparative anatomy: Translating between species in neuroscience
计算比较解剖学:神经科学中物种之间的翻译
- 批准号:
BB/X013227/1 - 财政年份:2023
- 资助金额:
$ 7.75万 - 项目类别:
Research Grant
Doctoral Dissertation Research: Social and ecological influences on brain anatomy
博士论文研究:社会和生态对大脑解剖学的影响
- 批准号:
2235348 - 财政年份:2023
- 资助金额:
$ 7.75万 - 项目类别:
Standard Grant
Development of a novel visualization, labeling, communication and tracking engine for human anatomy.
开发一种新颖的人体解剖学可视化、标签、通信和跟踪引擎。
- 批准号:
10761060 - 财政年份:2023
- 资助金额:
$ 7.75万 - 项目类别:
Understanding the functional anatomy of nociceptive spinal output neurons
了解伤害性脊髓输出神经元的功能解剖结构
- 批准号:
10751126 - 财政年份:2023
- 资助金额:
$ 7.75万 - 项目类别:
The Anatomy of Online Reviews: Evidence from the Steam Store
在线评论剖析:来自 Steam 商店的证据
- 批准号:
2872725 - 财政年份:2023
- 资助金额:
$ 7.75万 - 项目类别:
Studentship