Characterizing Motor Unit Mechanics and Muscle Contractile Properties In Vivo
表征体内运动单位力学和肌肉收缩特性
基本信息
- 批准号:10527926
- 负责人:
- 金额:$ 16.41万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-15 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:AgreementAlgorithmsAmyotrophic Lateral SclerosisAnatomyAnimalsArchitectureAtrophicBiological MarkersBiopsyClinicalCouplingDataDiagnosisDiagnostic ProcedureDimensionsDiseaseDisease ProgressionEarly DiagnosisElectric StimulationElementsEvaluationFascicleFiberFrequenciesFunctional disorderGoalsGoldHereditary DiseaseHeterogeneityHumanImaging DeviceImaging TechniquesImpairmentIn VitroInflammatoryIntramuscularIsometric ContractionLinkLower ExtremityMapsMeasurableMeasuresMechanicsMethodsModelingMotionMotorMotor NeuronsMuscleMuscle ContractionMuscle FibersMuscle WeaknessMuscle functionMusculoskeletal DiseasesMyopathyNerveNeuromuscular DiseasesNeuropathyOnset of illnessOpticsOutcomePatternPhysiologicalProceduresPropertyRelaxationResearchResearch PersonnelSamplingSeriesSeveritiesSkeletal MuscleSpatial DistributionSpeedSpinal Muscular AtrophySurfaceSystemTechniquesTestingTimeTime Series AnalysisTissuesTrainingUltrasonographyUpper Extremitybasedensitydisabilityearly onsetimage processingin vivoin vivo imagingindependent component analysisindividual responsemuscular structurenervous system disorderneuron lossneurophysiologynovelpersonalized medicinereconstructionrelating to nervous systemresponsespatiotemporaltooltreatment planningultrasound
项目摘要
Characterizing motor unit mechanics and muscle contractile properties in vivo
Muscle contractility has the potential as a promising biomarker for detecting disease onset earlier and
tracking the progress of neuromuscular diseases (NMDs). However, quantifying muscle contractile properties
is not currently within reach of standard diagnostic techniques, mainly because of a lack of in vivo techniques
that can readily be applied in a real clinical setting. The gold standard to quantify muscle contractile properties
is based on muscle biopsy and on in vitro studies, which is not only very invasive but also uncertain whether
muscle contractile properties induced by electrical stimulation reflect natural motor unit mechanics. More
importantly, slow-twitch fibers, not as accessible by electrical stimulation, are the most relevant to clinical
observations in neuromuscular diseases, emphasizing the need for new in vivo technique to understand the
contractile properties during voluntary contractions. Surface or intramuscular EMG is a potential alternative to
describe motor unit discharge properties, but EMG does not provide quantitative data about muscle contractile
properties. As both neural and muscular mechanisms are not only linked anatomically but also closely
interacted functionally, just one part of the information is not sufficient to comprehensively understand muscle
mechanical function. There is therefore a profound need to develop new in vivo techniques to characterize
muscle contractile properties as well as motor unit mechanics. Accordingly, the main goal of this R21 project is
to develop a new in vivo ultrasound imaging-based framework to precisely capture fascicle motion during
voluntary muscle contractions so that we can characterize muscle contractile properties and motor unit
mechanics. In Aim 1, we will develop an ultrafast ultrasound imaging sequence, using a research ultrasound
system, to capture dynamic fascicle motion during voluntary isometric contractions. We will also develop an
image processing method to quantify the tissue velocity field and in turn to identify mechanical responses of
individual active motor units (i.e., twitch trains). The twitch trains allow us to estimate motor unit discharge
patterns and muscle contractile properties. In Aim 2, we will evaluate the outcomes from the proposed
technique compared to the advanced surface EMG decomposition technique. We will quantify the similarity of
motor unit discharge patterns independently estimated from both ultrafast ultrasound recordings and
decomposition EMG recordings from human skeletal muscles during voluntary isometric contractions. A time-
series deconvolution method will be used to characterize muscle contractile properties. This aim will
demonstrate the feasibility that the proposed technique can characterize motor unit mechanics and muscle
contractile properties of human skeletal muscle in vivo. This project will provide a powerful tool to help
researchers/clinicians study understand the origins of muscle weakness in musculoskeletal or neurological
disorders, diagnose early muscle changes in inherited diseases, in inflammatory diseases, or detect abnormal
muscle activities in progressive nervous system disease.
在体内表征运动单元力学和肌肉收缩特性
肌肉收缩性有可能作为一个有前途的生物标志物,用于检测疾病发作更早,
追踪神经肌肉疾病(NMD)的进展。然而,量化肌肉收缩特性
目前还没有达到标准的诊断技术,主要是因为缺乏体内技术
可以很容易地应用于真实的临床环境。量化肌肉收缩特性的黄金标准
是基于肌肉活检和体外研究,这不仅是非常侵入性的,而且还不确定是否
由电刺激引起的肌肉收缩特性反映了自然的运动单元力学。更
重要的是,慢收缩纤维,不像电刺激那样容易接近,是与临床最相关的。
观察神经肌肉疾病,强调需要新的体内技术,以了解
在自愿收缩期间的收缩特性。表面或肌内肌电图是一种潜在的替代,
描述了运动单位放电特性,但EMG没有提供有关肌肉收缩的定量数据
特性.由于神经和肌肉机制不仅在解剖学上有联系,
在功能上相互作用,仅仅一部分信息不足以全面了解肌肉
机械功能因此,迫切需要开发新的体内技术来表征
肌肉收缩特性以及运动单元力学。因此,R21项目的主要目标是
开发一种新的基于体内超声成像的框架,以精确捕获
随意肌肉收缩,以便我们可以表征肌肉收缩特性和运动单位
力学在目标1中,我们将开发一种超快超声成像序列,
系统,以捕捉动态束运动过程中自愿等长收缩。我们还将开发一个
图像处理方法,以量化组织速度场,并进而识别
单独的主动马达单元(即,twitch trains)。抽搐序列可以让我们估计运动单位放电
模式和肌肉收缩特性。在目标2中,我们将评估拟议的
技术相比,先进的表面肌电分解技术。我们将量化的相似性
运动单位放电模式独立估计从超快超声记录和
在随意等长收缩期间来自人类骨骼肌的分解EMG记录。一段时间-
系列反卷积方法将用于表征肌肉收缩特性。这一目标将
证明了所提出的技术可以表征运动单元力学和肌肉的可行性
人体骨骼肌在体内的收缩特性。该项目将提供一个强大的工具,以帮助
研究人员/临床医生研究了解肌肉骨骼或神经系统中肌无力的起源
疾病,诊断遗传性疾病,炎症性疾病的早期肌肉变化,或检测异常
进行性神经系统疾病中的肌肉活动。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jongsang Son其他文献
Jongsang Son的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jongsang Son', 18)}}的其他基金
Characterizing Motor Unit Mechanics and Muscle Contractile Properties In Vivo
表征体内运动单位力学和肌肉收缩特性
- 批准号:
10704186 - 财政年份:2022
- 资助金额:
$ 16.41万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 16.41万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 16.41万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 16.41万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 16.41万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 16.41万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 16.41万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 16.41万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 16.41万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 16.41万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 16.41万 - 项目类别:
Continuing Grant














{{item.name}}会员




