Predicting actionable cancer vulnerabilities enabled by mutant-directed protein-protein interactions
通过突变导向的蛋白质-蛋白质相互作用预测可操作的癌症脆弱性
基本信息
- 批准号:10528836
- 负责人:
- 金额:$ 18.29万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsAutomobile DrivingBioinformaticsBiologicalBiological ModelsCancer BiologyCancer ModelCancer PatientCancer cell lineCause of DeathCell SurvivalCell physiologyCellsCessation of lifeClinicalClinical PharmacologyCommunitiesComputational ScienceComputing MethodologiesDNA Sequence AlterationDataData SetDevelopmentEnvironmentGenesGenetic studyGenomicsGoalsInformaticsLeadMalignant NeoplasmsMethodsMissense MutationMolecularMutationNational Cancer InstituteOncogenicOutcomePathway interactionsPerformancePharmaceutical PreparationsProcessProgram DevelopmentProtein AnalysisProteinsProteomePublicationsSamplingSuppressor MutationsSystems BiologyTestingTherapeuticTimeTranslatingTumor Suppressor Proteinsanalytical toolbasecancer genomecancer genomicscancer typeclinically actionablecomputerized toolsdesignexperiencegenetic signaturegenomic datainformatics toolinnovationinsightmutantnovelnovel therapeutic interventionpersonalized approachpersonalized therapeuticprecision medicineprogramsprotein protein interactionprotein structureresponsescreeningtooltumortumorigenesis
项目摘要
Cancer is the second leading cause of death worldwide, causing more than 10 million deaths every year. In
response, tremendous efforts have been made over the past decades to understand the molecular mechanisms
of tumorigenesis and inform new therapeutic strategies in cancer. Unraveling the cancer genome and proteome
landscapes revealed that genomic alterations, such as missense mutations, promote tumorigenesis by rewiring
networks of protein-protein interactions (PPI). However, the understanding of how mutant-directed neomorph
PPIs (neoPPI) lead to the acquisition of cancer hallmarks and the discovery of neoPPI-enabled cancer
vulnerabilities remain major challenges. We propose to address this challenge by developing novel
computational methods termed Averon Notebook to discover actionable vulnerabilities enabled by rewired
oncogenic networks. To achieve this goal, we will leverage our expertise in both cancer bioinformatics and
experimental cancer biology demonstrated in numerous publications and long-time participation in the Cancer
Target Discovery and Development (CTD^2) Network of the National Cancer Institute. Over the past decade, we
have established comprehensive bioinformatics workflows and novel analytical tools to collect, process,
integrate, and analyze different types of cancer-related data. To integrate cancer genomics data with protein-
protein interaction networks and clinical compounds, we have developed the OncoPPi Portal, which has already
enabled the discovery of multiple new molecular mechanisms of tumorigenesis. In this project, we will capitalize
on our expertise in computational science and cancer biology to develop i) a new algorithm to determine the
neoPPI-regulated biological programs, and ii) methods to determine actionable vulnerabilities in neoPPI-
regulated pathways. Ultimately, this project will provide the first computational environment specially designed
to rapidly identify actionable targets and pathways enabled by mutant-directed protein-protein interactions to
inform target discovery in cancer.
癌症是全球第二大死亡原因,每年造成超过1000万人死亡。在
反应,在过去的几十年里,人们做出了巨大的努力来了解分子机制,
并为癌症的新治疗策略提供信息。解开癌症基因组和蛋白质组
景观显示,基因组的改变,如错义突变,促进肿瘤发生的重新布线,
蛋白质相互作用网络(PPI)。然而,对基因导向的新形态
PPI(neoPPI)导致获得癌症标志和发现neoPPI激活的癌症
脆弱性仍然是重大挑战。我们建议通过开发新的
称为Averon笔记本的计算方法,以发现通过重新布线实现的可操作漏洞
致癌网络为了实现这一目标,我们将利用我们在癌症生物信息学和
实验癌症生物学在许多出版物和长期参与癌症
国家癌症研究所的靶点发现和开发(CTD ^2)网络。在过去的十年里,我们
建立了全面的生物信息学工作流程和新颖的分析工具,
整合和分析不同类型的癌症相关数据。把癌症基因组数据和蛋白质-
蛋白质相互作用网络和临床化合物,我们已经开发了OncoPPi门户网站,它已经
使发现多种新的肿瘤发生的分子机制成为可能。在这个项目中,我们将利用
利用我们在计算科学和癌症生物学方面的专业知识,开发i)一种新的算法来确定
neoPPI调节的生物程序,和ii)确定neoPPI中可操作漏洞的方法-
调控途径。最终,该项目将提供第一个专门设计的计算环境,
快速鉴定由多核苷酸导向的蛋白质-蛋白质相互作用实现的可操作的靶标和途径,
为癌症中靶点发现提供信息。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ANDREY IVANOV其他文献
ANDREY IVANOV的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 18.29万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 18.29万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 18.29万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 18.29万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 18.29万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 18.29万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 18.29万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 18.29万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 18.29万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 18.29万 - 项目类别:
Continuing Grant














{{item.name}}会员




