Novel disease-electrocardiogram associations in inherited arrhythmia syndromes
遗传性心律失常综合征中的新疾病-心电图关联
基本信息
- 批准号:10526388
- 负责人:
- 金额:$ 16.7万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-16 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectAgeAlgorithmsArrhythmiaArtificial IntelligenceCardiacCardiac DeathCharacteristicsChildChildhoodClinicalComputational algorithmDataDatabasesDependenceDetectionDevelopmentDiagnosisDiagnosticDiseaseElectrocardiogramElectrophysiology (science)EvaluationFoundationsGenderGenetic DiseasesGoalsHeartHeart ArrestHuman ResourcesIndividualInheritedInterobserver VariabilityMachine LearningMeasuresMethodsModalityModelingNomogramsNormal RangeNormalcyObserver VariationPatientsPatternPredictive ValuePrevalenceReproducibilityRiskScreening procedureSensitivity and SpecificityStandardizationStatistical Data InterpretationSyndromeSystemTechniquesTestingaccurate diagnosisage groupartificial intelligence algorithmbasecohortdiagnostic toolempoweredfollow-upgenerative adversarial networkheart electrical activityimprovedinnovationmachine learning algorithmmachine learning methodmachine learning modelnovelpoint of careportabilitypredictive modelingpredictive toolspreventreading abilityscreeningscreening programsudden cardiac deathtooltraittrustworthinessunsupervised learningyoung adult
项目摘要
ABSTRACT
Electrocardiograms (ECGs) have been used for more than a century to detect the electrical activity of the
heart. ECGs are used to screen and diagnose patients with inherited arrhythmia syndromes, diseases that can
result in cardiac arrhythmias and sudden cardiac death. The ECG is considered an important part of the
screening and diagnostic armamentarium of IAS, because it is inexpensive, portable, provides point-of-care
results and does not require highly skilled personnel to perform. However, from the standpoint of interpretation,
the ECG does not yield a sensitive and specific result and therefore it fails to serve as an accurate screening or
diagnostic tool for IAS. Part of this inaccuracy derives from the assessment of too few individuals to generate
the normal reference ECG values, with more than 100 age and gender-dependent variables and cut-off values
to memorize, all resulting in foundational deficiencies and a very high inter-observer interpretation variability.
We have created a novel ECG database from the largest historical cohort of normal individuals of more than
27,000 subjects. We then transformed the data of 102 ECG variables to express the values as Z-scores. Z-
scores by definition facilitate an immediate and objective distinction of normality and abnormality across all
measures. Expressing the ECG values in Z-scores eliminates inter-observer variability in the interpretation of
ECG values. In addition, we developed sophisticated computer algorithms enhanced by artificial intelligence
(AI) to detect characteristic traits of ECG variables attributable to a group of subjects.
In this study we will collect ECGs from patients with IAS. Next, we will compare these ECGs to our ECG
database of normal individuals utilizing the Z-score based nomograms. We will use statistical analysis to detect
differences in the 102 ECG variables between the affected (IAS) and unaffected (normal) subjects. We will
identify the ECG variables that show the most promising distinction characteristics for an IAS disease entity.
Next, we will use AI algorithms to detect highly sensitive and specific combinations of ECG variables. We will
apply three different models on the digitized ECG data. First, we will quantify dependencies between ECG
variables with a combination of principal components regression and graphical LASSO algorithms. This
approach will automatically identify the best combination of ECG variables to differentiate between affected
and normal individuals, and will develop a set of variables that can be used to provide the most sensitive and
specific disease-ECG associations for specific IAS to date. We will then use two distinct machine learning
models to detect anomalies and pattern of novelties in the ECG of subjects with IAS. With the combination of
traditional statistical analysis and the AI based algorithms, we will be able to identify specific ECG variables or
groups of ECG variables and their Z-score values to serve as predictive tools for the diagnosis of IAS. Our
long-term goal is to utilize this model for large scale screening efforts to detect IAS in the young and thereby
prevent catastrophic complications, such as sudden cardiac death.
抽象的
心电图(ECG)已使用一个多世纪来检测
心。 ECG用于筛查和诊断遗传心律失常综合征患者,可以
导致心律不齐和心脏猝死。心电图被认为是
IAS的筛查和诊断武器库,因为它便宜,便携式,可提供护理点
结果,不需要高技能的人员表演。但是,从解释的角度来看
ECG不会产生敏感和特定的结果,因此它无法作为准确的筛选或
IAS的诊断工具。这种不准确的一部分来自对太少个人而产生的评估
正常参考ECG值,具有超过100岁的年龄和性别依赖性变量和截止值
为了记住,所有这些都导致基本缺陷和非常高的观察者解释变异性。
我们已经从最大的历史人群中创建了一个新颖的ECG数据库,而不是
27,000名受试者。然后,我们将102个ECG变量的数据转换为表示为z评分的值。 z-
根据定义,得分促进了所有人的正常和异常的直接和客观区分
措施。在z得分中表达ECG值可以消除对解释的观察者间变异性
ECG值。此外,我们开发了通过人工智能增强的复杂计算机算法
(AI)检测可归因于一组受试者的ECG变量的特征性状。
在这项研究中,我们将从IAS患者那里收集ECG。接下来,我们将将这些心电图与我们的心电图进行比较
利用基于Z分数的列图的正常个体数据库。我们将使用统计分析来检测
受影响(IAS)和未受影响(正常)受试者之间102个ECG变量的差异。我们将
确定具有IAS疾病实体最有希望的区别特征的心电图变量。
接下来,我们将使用AI算法来检测ECG变量的高度敏感和特定组合。我们将
在数字化的ECG数据上应用三个不同的模型。首先,我们将量化ECG之间的依赖性
主成分回归和图形套索算法的变量。这
方法将自动确定ECG变量的最佳组合以区分受影响
和普通个人,并将开发一组可用于提供最敏感和最敏感的变量
迄今为止特定IAS的特定疾病-ECG关联。然后,我们将使用两个不同的机器学习
在具有IAS的受试者的心电图中检测新颖性异常的模型。结合
传统的统计分析和基于AI的算法,我们将能够确定特定的ECG变量或
ECG变量组及其Z分数值是作为IAS诊断的预测工具。我们的
长期目标是利用该模型进行大规模筛查工作,以检测年轻人的IAS,从而检测
预防灾难性并发症,例如猝死。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ANDRAS BRATINCSAK其他文献
ANDRAS BRATINCSAK的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ANDRAS BRATINCSAK', 18)}}的其他基金
Novel disease-electrocardiogram associations in inherited arrhythmia syndromes
遗传性心律失常综合征中的新疾病-心电图关联
- 批准号:
10684855 - 财政年份:2022
- 资助金额:
$ 16.7万 - 项目类别:
MMP9 as a response identification biomarker for doxycycline in Kawasaki disease
MMP9 作为川崎病强力霉素反应识别生物标志物
- 批准号:
9335945 - 财政年份:2016
- 资助金额:
$ 16.7万 - 项目类别:
MMP9 as a response identification biomarker for doxycycline in Kawasaki disease
MMP9 作为川崎病强力霉素反应识别生物标志物
- 批准号:
9184279 - 财政年份:2016
- 资助金额:
$ 16.7万 - 项目类别:
相似国自然基金
多氯联苯与机体交互作用对生物学年龄的影响及在衰老中的作用机制
- 批准号:82373667
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
恒星模型中氧元素丰度的变化对大样本F、G、K矮星年龄测定的影响
- 批准号:12303035
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于年龄和空间的非随机混合对性传播感染影响的建模与研究
- 批准号:12301629
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
母传抗体水平和疫苗初种年龄对儿童麻疹特异性抗体动态变化的影响
- 批准号:82304205
- 批准年份:2023
- 资助金额:20 万元
- 项目类别:青年科学基金项目
中国东部地区大气颗粒物的年龄分布特征及其影响因素的模拟研究
- 批准号:42305193
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
Executive functions in urban Hispanic/Latino youth: exposure to mixture of arsenic and pesticides during childhood
城市西班牙裔/拉丁裔青年的执行功能:童年时期接触砷和农药的混合物
- 批准号:
10751106 - 财政年份:2024
- 资助金额:
$ 16.7万 - 项目类别:
The Proactive and Reactive Neuromechanics of Instability in Aging and Dementia with Lewy Bodies
衰老和路易体痴呆中不稳定的主动和反应神经力学
- 批准号:
10749539 - 财政年份:2024
- 资助金额:
$ 16.7万 - 项目类别:
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 16.7万 - 项目类别:
Genetics of Extreme Phenotypes of OSA and Associated Upper Airway Anatomy
OSA 极端表型的遗传学及相关上呼吸道解剖学
- 批准号:
10555809 - 财政年份:2023
- 资助金额:
$ 16.7万 - 项目类别:
Identifying and Addressing the Effects of Social Media Use on Young Adults' E-Cigarette Use: A Solutions-Oriented Approach
识别和解决社交媒体使用对年轻人电子烟使用的影响:面向解决方案的方法
- 批准号:
10525098 - 财政年份:2023
- 资助金额:
$ 16.7万 - 项目类别: