Novel disease-electrocardiogram associations in inherited arrhythmia syndromes
遗传性心律失常综合征中的新疾病-心电图关联
基本信息
- 批准号:10526388
- 负责人:
- 金额:$ 16.7万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-16 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectAgeAlgorithmsArrhythmiaArtificial IntelligenceCardiacCardiac DeathCharacteristicsChildChildhoodClinicalComputational algorithmDataDatabasesDependenceDetectionDevelopmentDiagnosisDiagnosticDiseaseElectrocardiogramElectrophysiology (science)EvaluationFoundationsGenderGenetic DiseasesGoalsHeartHeart ArrestHuman ResourcesIndividualInheritedInterobserver VariabilityMachine LearningMeasuresMethodsModalityModelingNomogramsNormal RangeNormalcyObserver VariationPatientsPatternPredictive ValuePrevalenceReproducibilityRiskScreening procedureSensitivity and SpecificityStandardizationStatistical Data InterpretationSyndromeSystemTechniquesTestingaccurate diagnosisage groupartificial intelligence algorithmbasecohortdiagnostic toolempoweredfollow-upgenerative adversarial networkheart electrical activityimprovedinnovationmachine learning algorithmmachine learning methodmachine learning modelnovelpoint of careportabilitypredictive modelingpredictive toolspreventreading abilityscreeningscreening programsudden cardiac deathtooltraittrustworthinessunsupervised learningyoung adult
项目摘要
ABSTRACT
Electrocardiograms (ECGs) have been used for more than a century to detect the electrical activity of the
heart. ECGs are used to screen and diagnose patients with inherited arrhythmia syndromes, diseases that can
result in cardiac arrhythmias and sudden cardiac death. The ECG is considered an important part of the
screening and diagnostic armamentarium of IAS, because it is inexpensive, portable, provides point-of-care
results and does not require highly skilled personnel to perform. However, from the standpoint of interpretation,
the ECG does not yield a sensitive and specific result and therefore it fails to serve as an accurate screening or
diagnostic tool for IAS. Part of this inaccuracy derives from the assessment of too few individuals to generate
the normal reference ECG values, with more than 100 age and gender-dependent variables and cut-off values
to memorize, all resulting in foundational deficiencies and a very high inter-observer interpretation variability.
We have created a novel ECG database from the largest historical cohort of normal individuals of more than
27,000 subjects. We then transformed the data of 102 ECG variables to express the values as Z-scores. Z-
scores by definition facilitate an immediate and objective distinction of normality and abnormality across all
measures. Expressing the ECG values in Z-scores eliminates inter-observer variability in the interpretation of
ECG values. In addition, we developed sophisticated computer algorithms enhanced by artificial intelligence
(AI) to detect characteristic traits of ECG variables attributable to a group of subjects.
In this study we will collect ECGs from patients with IAS. Next, we will compare these ECGs to our ECG
database of normal individuals utilizing the Z-score based nomograms. We will use statistical analysis to detect
differences in the 102 ECG variables between the affected (IAS) and unaffected (normal) subjects. We will
identify the ECG variables that show the most promising distinction characteristics for an IAS disease entity.
Next, we will use AI algorithms to detect highly sensitive and specific combinations of ECG variables. We will
apply three different models on the digitized ECG data. First, we will quantify dependencies between ECG
variables with a combination of principal components regression and graphical LASSO algorithms. This
approach will automatically identify the best combination of ECG variables to differentiate between affected
and normal individuals, and will develop a set of variables that can be used to provide the most sensitive and
specific disease-ECG associations for specific IAS to date. We will then use two distinct machine learning
models to detect anomalies and pattern of novelties in the ECG of subjects with IAS. With the combination of
traditional statistical analysis and the AI based algorithms, we will be able to identify specific ECG variables or
groups of ECG variables and their Z-score values to serve as predictive tools for the diagnosis of IAS. Our
long-term goal is to utilize this model for large scale screening efforts to detect IAS in the young and thereby
prevent catastrophic complications, such as sudden cardiac death.
摘要
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ANDRAS BRATINCSAK其他文献
ANDRAS BRATINCSAK的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ANDRAS BRATINCSAK', 18)}}的其他基金
Novel disease-electrocardiogram associations in inherited arrhythmia syndromes
遗传性心律失常综合征中的新疾病-心电图关联
- 批准号:
10684855 - 财政年份:2022
- 资助金额:
$ 16.7万 - 项目类别:
MMP9 as a response identification biomarker for doxycycline in Kawasaki disease
MMP9 作为川崎病强力霉素反应识别生物标志物
- 批准号:
9335945 - 财政年份:2016
- 资助金额:
$ 16.7万 - 项目类别:
MMP9 as a response identification biomarker for doxycycline in Kawasaki disease
MMP9 作为川崎病强力霉素反应识别生物标志物
- 批准号:
9184279 - 财政年份:2016
- 资助金额:
$ 16.7万 - 项目类别:
相似海外基金
Hormone therapy, age of menopause, previous parity, and APOE genotype affect cognition in aging humans.
激素治疗、绝经年龄、既往产次和 APOE 基因型会影响老年人的认知。
- 批准号:
495182 - 财政年份:2023
- 资助金额:
$ 16.7万 - 项目类别:
Investigating how alternative splicing processes affect cartilage biology from development to old age
研究选择性剪接过程如何影响从发育到老年的软骨生物学
- 批准号:
2601817 - 财政年份:2021
- 资助金额:
$ 16.7万 - 项目类别:
Studentship
RAPID: Coronavirus Risk Communication: How Age and Communication Format Affect Risk Perception and Behaviors
RAPID:冠状病毒风险沟通:年龄和沟通方式如何影响风险认知和行为
- 批准号:
2029039 - 财政年份:2020
- 资助金额:
$ 16.7万 - 项目类别:
Standard Grant
Neighborhood and Parent Variables Affect Low-Income Preschool Age Child Physical Activity
社区和家长变量影响低收入学龄前儿童的身体活动
- 批准号:
9888417 - 财政年份:2019
- 资助金额:
$ 16.7万 - 项目类别:
The affect of Age related hearing loss for cognitive function
年龄相关性听力损失对认知功能的影响
- 批准号:
17K11318 - 财政年份:2017
- 资助金额:
$ 16.7万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
- 批准号:
9320090 - 财政年份:2017
- 资助金额:
$ 16.7万 - 项目类别:
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
- 批准号:
10166936 - 财政年份:2017
- 资助金额:
$ 16.7万 - 项目类别:
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
- 批准号:
9761593 - 财政年份:2017
- 资助金额:
$ 16.7万 - 项目类别:
How age dependent molecular changes in T follicular helper cells affect their function
滤泡辅助 T 细胞的年龄依赖性分子变化如何影响其功能
- 批准号:
BB/M50306X/1 - 财政年份:2014
- 资助金额:
$ 16.7万 - 项目类别:
Training Grant
Inflamm-aging: What do we know about the effect of inflammation on HIV treatment and disease as we age, and how does this affect our search for a Cure?
炎症衰老:随着年龄的增长,我们对炎症对艾滋病毒治疗和疾病的影响了解多少?这对我们寻找治愈方法有何影响?
- 批准号:
288272 - 财政年份:2013
- 资助金额:
$ 16.7万 - 项目类别:
Miscellaneous Programs














{{item.name}}会员




