Enzyme-Powered Self-Propelled DNA Nanoparticles for Disruption and Antibiotic Delivery in Topical Biofilms
用于局部生物膜破坏和抗生素递送的酶驱动自驱动 DNA 纳米颗粒
基本信息
- 批准号:10528087
- 负责人:
- 金额:$ 18.02万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-06 至 2026-04-30
- 项目状态:未结题
- 来源:
- 关键词:Acidic RegionAnimal ModelAnti-Bacterial AgentsAntibiotic ResistanceAntibiotic TherapyAntibioticsAntigensAreaBacteriaBiologicalBiological AssayBiomassBladderBurn injuryBypassCaliberCeftazidimeCessation of lifeChemotaxisClinicalClinical TrialsComplexDNADNA MaintenanceData SetDependenceDestinationsDiffuseDiseaseEconomicsEnvironmentEnzymesExtracellular MatrixFibroblastsFluorescence SpectroscopyFoundationsFutureGastrointestinal DiseasesGelHealth Care CostsHumanHydrogen PeroxideHydrolaseImmune responseInfectionLeadLocationLocomotionMalignant NeoplasmsMalignant neoplasm of urinary bladderMeasuresMediatingMedical Care CostsMethodsMicrobial BiofilmsMicrobiologyModelingMucinsMusNanotechnologyNutrientOutputPatientsPatternPermeabilityPharmaceutical PreparationsPlatinumPolymersPseudomonas aeruginosaShapesSkinSpeedStomachStressTechnologyTestingTopical applicationTransmission Electron MicroscopyUncertaintyUreaUreaseUrineWorkantimicrobial drugbasebiomaterial compatibilitycombinatorialdesigndiabetic ulcerextracellularin vivoinnovationmouse modelmultidisciplinarynanoparticlenanoscaleopen woundpH gradientparticlepathogenquorum sensingremediationresponseskin lesionsuccesstargeted delivery
项目摘要
PROJECT SUMMARY/ABSTRACT
Bacterial biofilms are responsible for most human infections, causing tens of thousands of deaths and billions in
medical costs per year. Topical biofilms alone cause significant harm to patients by growing on open wounds,
skin lesions, burn injuries, or diabetic ulcers, and elsewhere. Biofilms are notoriously difficult to eradicate, in
large part because of the extracellular polymeric substance (EPS), a self-produced extracellular matrix in which
biofilm bacteria reside. The EPS benefits bacteria in many ways, including mediating quorum sensing, providing
nutrients, and blocking transport of antibiotics and host immune response. The ability to actively penetrate the
EPS and deliver anti-bacterial cargo where it is most needed would bypass many of these protections and could
thus have a transformative impact on the remediation of biofilms. First introduced in 2004, artificial self-propelled
particles (SPPs) can propel themselves through complex biological media and deliver cargo to specific locations.
Thus, SPPs hold significant potential for biomedical applications such as biofilm remediation. However, SPPs
must overcome significant challenges in the form of biocompatibility, tracking, and control to be viable for clinical
use. Here, we propose to leverage the burgeoning field of DNA nanotechnology to develop urease-powered
DNA-origami-based self-propelled particles (DNA-SPPs) for biofilm remediation. As a model organism, we focus
on the well-studied pathogen Pseudomonas aeruginosa. Aim 1 of this study will quantify the dependence of
DNA-SPPs’ locomotion on local urea concentration and pH and elucidate the extent to which they perform
chemotaxis in urea gradients. Aim 2 will test the hypothesis that if DNA-SPPs are decorated with glycosyl
hydrolase enzymes (which are widely used to disrupt the biofilm matrix, specifically in the case of P. aeruginosa),
they will degrade the biofilm matrix as they move through it, weakening the protection the EPS normally provides
to bacteria. The success of Aim 2 will be marked by greater efficacy of a model antibiotic (ceftazidime, which has
demonstrated efficacy at treating P. aeruginosa biofilms) administered topically. In Aim 3, we will load ceftazidime
directly onto DNA-SPPs using a pH-sensitive motif (e.g., I-motif) that undergoes structural changes in response
to pH decrease, thus releasing cargo only in acidic regions. By correlating the delivered payload to the pH
distribution, we will confirm the ability of DNA-SPPs to deliver cargo preferentially in acidic regions, where hard-
to-reach bacteria tend to cluster. Finally, we will assess the combinatorial benefits of the approaches in Aims 2
and 3 by using DNA-SPPs to both increase the biofilm’s permeability and to deliver antibiotics deep inside the
biofilm. The major output of this study will be design criteria for DNA-based enzyme-powered SPPs to disrupt
and deliver cargo in extracellular matrix (ECM) environments, which could have a major impact on the treatment
of biofilms, and will lay the foundation for a customizable platform technology applicable to a wide range of ECM-
mediated diseases.
项目摘要/摘要
细菌生物膜负责大多数人类感染,导致数万人死亡和数十亿人
每年的医疗费用。仅局部生物膜在开放性伤口上生长,对患者造成重大伤害,
皮肤病变,烧伤或糖尿病性溃疡以及其他地方。众所周知,生物膜很难放射座位
大部分是由于细胞外聚合物物质(EPS),这是一种自我生产的细胞外基质
生物膜细菌居住。每股收益在许多方面使细菌受益
营养和阻断抗生素和宿主免疫反应的转运。积极穿透的能力
EPS并提供反细菌货物,最需要的地方将绕过许多这样的保护措施,并且可以
这对生物膜的修复具有变革性的影响。首次引入2004年,人工自我宣传
颗粒(SPP)可以通过复杂的生物学介质推动自己,并将货物运送到特定位置。
这是SPPs在生物医学应用(例如生物膜修复)中具有巨大潜力。但是,SPP
必须克服生物相容性,跟踪和控制形式的重大挑战,以便于临床
使用。在这里,我们建议利用DNA纳米技术的迅速发展领域开发尿素驱动
基于DNA-Origami的自螺旋颗粒(DNA-SPPS)用于生物膜修复。作为模型有机体,我们集中于
在铜绿假单胞菌拟研究的病原体上。本研究的目标1将量化
DNA-SPPS对局部尿素浓度和pH的运动,并阐明了它们执行的程度
尿素梯度中的趋化性。 AIM 2将检验以下假设:如果DNA-SPP用糖基饰
水解酶(广泛用于破坏生物膜基质,特别是在铜绿假单胞菌的情况下),
他们将在通过它移动时降解生物膜矩阵,从而削弱EPS通常提供的保护
到细菌。 AIM 2的成功将以模型抗生素的效率提高(头孢济)的标志
在局部施用的铜绿假单胞菌生物膜上表现出有效性。在AIM 3中,我们将加载头皮
直接使用pH敏感基序(例如i-motif)直接进入DNA-SPPS,该基序经历了响应中的结构变化
pH值减少,因此仅在酸性区域释放货物。通过将已交付的有效载荷与PH相关联
分布,我们将确认DNA-SPPS在酸性区域优先交付货物的能力,在酸性区域中
到达细菌倾向于聚集。最后,我们将评估目标2中方法的组合益处2
和3通过使用DNA-SPPS来增加生物膜的渗透性并在深处递送抗生素
生物膜。这项研究的主要输出将是基于DNA的酶供电SPP的设计标准
并在细胞外基质(ECM)环境中运送货物,这可能会对治疗产生重大影响
生物膜的建立,并将为适用于各种ECM-的可自定义平台技术奠定基础
介导的疾病。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jeffrey Lawrence Moran其他文献
Jeffrey Lawrence Moran的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
髋关节撞击综合征过度运动及机械刺激动物模型建立与相关致病机制研究
- 批准号:82372496
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
利用碱基编辑器治疗肥厚型心肌病的动物模型研究
- 批准号:82300396
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
利用小型猪模型评价动脉粥样硬化易感基因的作用
- 批准号:32370568
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
丁苯酞通过调节细胞异常自噬和凋亡来延缓脊髓性肌萎缩症动物模型脊髓运动神经元的丢失
- 批准号:82360332
- 批准年份:2023
- 资助金额:31.00 万元
- 项目类别:地区科学基金项目
APOBEC3A驱动膀胱癌发生发展的动物模型及其机制研究
- 批准号:82303057
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
Thiazolino-Pyridone Compounds as Novel Drugs for Tuberculosis
噻唑啉-吡啶酮化合物作为结核病新药
- 批准号:
10698829 - 财政年份:2023
- 资助金额:
$ 18.02万 - 项目类别:
Prevention of intracellular infection in diabetic wounds by commensal Staphylococcus epidermidis
共生表皮葡萄球菌预防糖尿病伤口细胞内感染
- 批准号:
10679628 - 财政年份:2023
- 资助金额:
$ 18.02万 - 项目类别:
Gut Microbial Factors in Farming Lifestyle and Allergic Sensitization
农业生活方式和过敏致敏中的肠道微生物因素
- 批准号:
10633368 - 财政年份:2023
- 资助金额:
$ 18.02万 - 项目类别:
Brewing anti-toxin drugs using probiotic yeast
利用益生菌酵母酿造抗毒素药物
- 批准号:
10687670 - 财政年份:2023
- 资助金额:
$ 18.02万 - 项目类别: