Enzyme-Powered Self-Propelled DNA Nanoparticles for Disruption and Antibiotic Delivery in Topical Biofilms

用于局部生物膜破坏和抗生素递送的酶驱动自驱动 DNA 纳米颗粒

基本信息

  • 批准号:
    10528087
  • 负责人:
  • 金额:
    $ 18.02万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-08-06 至 2026-04-30
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY/ABSTRACT Bacterial biofilms are responsible for most human infections, causing tens of thousands of deaths and billions in medical costs per year. Topical biofilms alone cause significant harm to patients by growing on open wounds, skin lesions, burn injuries, or diabetic ulcers, and elsewhere. Biofilms are notoriously difficult to eradicate, in large part because of the extracellular polymeric substance (EPS), a self-produced extracellular matrix in which biofilm bacteria reside. The EPS benefits bacteria in many ways, including mediating quorum sensing, providing nutrients, and blocking transport of antibiotics and host immune response. The ability to actively penetrate the EPS and deliver anti-bacterial cargo where it is most needed would bypass many of these protections and could thus have a transformative impact on the remediation of biofilms. First introduced in 2004, artificial self-propelled particles (SPPs) can propel themselves through complex biological media and deliver cargo to specific locations. Thus, SPPs hold significant potential for biomedical applications such as biofilm remediation. However, SPPs must overcome significant challenges in the form of biocompatibility, tracking, and control to be viable for clinical use. Here, we propose to leverage the burgeoning field of DNA nanotechnology to develop urease-powered DNA-origami-based self-propelled particles (DNA-SPPs) for biofilm remediation. As a model organism, we focus on the well-studied pathogen Pseudomonas aeruginosa. Aim 1 of this study will quantify the dependence of DNA-SPPs’ locomotion on local urea concentration and pH and elucidate the extent to which they perform chemotaxis in urea gradients. Aim 2 will test the hypothesis that if DNA-SPPs are decorated with glycosyl hydrolase enzymes (which are widely used to disrupt the biofilm matrix, specifically in the case of P. aeruginosa), they will degrade the biofilm matrix as they move through it, weakening the protection the EPS normally provides to bacteria. The success of Aim 2 will be marked by greater efficacy of a model antibiotic (ceftazidime, which has demonstrated efficacy at treating P. aeruginosa biofilms) administered topically. In Aim 3, we will load ceftazidime directly onto DNA-SPPs using a pH-sensitive motif (e.g., I-motif) that undergoes structural changes in response to pH decrease, thus releasing cargo only in acidic regions. By correlating the delivered payload to the pH distribution, we will confirm the ability of DNA-SPPs to deliver cargo preferentially in acidic regions, where hard- to-reach bacteria tend to cluster. Finally, we will assess the combinatorial benefits of the approaches in Aims 2 and 3 by using DNA-SPPs to both increase the biofilm’s permeability and to deliver antibiotics deep inside the biofilm. The major output of this study will be design criteria for DNA-based enzyme-powered SPPs to disrupt and deliver cargo in extracellular matrix (ECM) environments, which could have a major impact on the treatment of biofilms, and will lay the foundation for a customizable platform technology applicable to a wide range of ECM- mediated diseases.
项目总结/摘要 细菌生物膜是大多数人类感染的原因,导致数万人死亡和数十亿人死亡。 每年的医疗费用。单独的局部生物膜通过在开放性伤口上生长而对患者造成显著伤害, 皮肤损伤、烧伤或糖尿病性溃疡以及其他地方。众所周知,生物膜很难根除, 很大程度上是因为胞外聚合物(EPS),一种自我产生的胞外基质, 生物膜细菌驻留。EPS在许多方面有益于细菌,包括介导群体感应, 营养素,并阻断抗生素和宿主免疫反应的运输。主动渗透的能力 EPS并将抗菌货物运送到最需要的地方将绕过其中许多保护措施,并且可以 因此对生物膜的修复具有变革性的影响。2004年首次推出,人工自走 粒子(SPP)可以推动自身通过复杂的生物介质,并将货物运送到特定位置。 因此,SPP具有生物医学应用的巨大潜力,如生物膜修复。然而,SPP 必须克服生物相容性、跟踪和控制方面的重大挑战,才能在临床上可行。 使用.在这里,我们建议利用新兴的DNA纳米技术领域来开发尿素酶动力的 用于生物膜修复的基于DNA折纸的自推进颗粒(DNA-SPPs)。作为一个模式生物,我们关注 研究充分的病原体绿脓杆菌本研究的目的1将量化 DNA-SPPs对局部尿素浓度和pH的运动,并阐明它们在多大程度上发挥作用 尿素梯度中的趋化性。目的2将检验如果DNA-SPPs被糖基修饰, 水解酶(其广泛用于破坏生物膜基质,特别是在铜绿假单胞菌的情况下), 当它们穿过生物膜基质时,它们会降解生物膜基质,削弱EPS通常提供的保护 细菌。目标2的成功将以一种模型抗生素(头孢他啶, 在治疗铜绿假单胞菌生物膜方面表现出有效性)。在目标3中,我们将加载头孢他啶 使用pH敏感基序(例如,I-motif),响应时发生结构变化 pH降低,从而仅在酸性区域释放货物。通过将递送的有效载荷与pH值相关联, 分布,我们将确认DNA-SPP优先在酸性区域运送货物的能力,在那里很难- 到达的细菌倾向于聚集。最后,我们将评估目标2中方法的组合效益 和3通过使用DNA-SPPs来增加生物膜的渗透性并将抗生素递送到生物膜深处, 生物膜。这项研究的主要成果将是基于DNA的酶动力SPP的设计标准, 并在细胞外基质(ECM)环境中输送货物,这可能对治疗产生重大影响。 的生物膜,并将奠定基础,可定制的平台技术适用于广泛的ECM- 介导的疾病。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jeffrey Lawrence Moran其他文献

Jeffrey Lawrence Moran的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Quantification of Neurovasculature Changes in a Post-Hemorrhagic Stroke Animal-Model
出血性中风后动物模型中神经血管变化的量化
  • 批准号:
    495434
  • 财政年份:
    2023
  • 资助金额:
    $ 18.02万
  • 项目类别:
Bioactive Injectable Cell Scaffold for Meniscus Injury Repair in a Large Animal Model
用于大型动物模型半月板损伤修复的生物活性可注射细胞支架
  • 批准号:
    10586596
  • 财政年份:
    2023
  • 资助金额:
    $ 18.02万
  • 项目类别:
A Comparison of Treatment Strategies for Recovery of Swallow and Swallow-Respiratory Coupling Following a Prolonged Liquid Diet in a Young Animal Model
幼年动物模型中长期流质饮食后吞咽恢复和吞咽呼吸耦合治疗策略的比较
  • 批准号:
    10590479
  • 财政年份:
    2023
  • 资助金额:
    $ 18.02万
  • 项目类别:
Small animal model for evaluating the impacts of cleft lip repairing scar on craniofacial growth and development
评价唇裂修复疤痕对颅面生长发育影响的小动物模型
  • 批准号:
    10642519
  • 财政年份:
    2023
  • 资助金额:
    $ 18.02万
  • 项目类别:
Diurnal grass rats as a novel animal model of seasonal affective disorder
昼夜草鼠作为季节性情感障碍的新型动物模型
  • 批准号:
    23K06011
  • 财政年份:
    2023
  • 资助金额:
    $ 18.02万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Longitudinal Ocular Changes in Naturally Occurring Glaucoma Animal Model
自然发生的青光眼动物模型的纵向眼部变化
  • 批准号:
    10682117
  • 财政年份:
    2023
  • 资助金额:
    $ 18.02万
  • 项目类别:
A whole animal model for investigation of ingested nanoplastic mixtures and effects on genomic integrity and health
用于研究摄入的纳米塑料混合物及其对基因组完整性和健康影响的整体动物模型
  • 批准号:
    10708517
  • 财政年份:
    2023
  • 资助金额:
    $ 18.02万
  • 项目类别:
A Novel Large Animal Model for Studying the Developmental Potential and Function of LGR5 Stem Cells in Vivo and in Vitro
用于研究 LGR5 干细胞体内外发育潜力和功能的新型大型动物模型
  • 批准号:
    10575566
  • 财政年份:
    2023
  • 资助金额:
    $ 18.02万
  • 项目类别:
Elucidating the pathogenesis of a novel animal model mimicking chronic entrapment neuropathy
阐明模拟慢性卡压性神经病的新型动物模型的发病机制
  • 批准号:
    23K15696
  • 财政年份:
    2023
  • 资助金额:
    $ 18.02万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
The effect of anti-oxidant on swallowing function in an animal model of dysphagia
抗氧化剂对吞咽困难动物模型吞咽功能的影响
  • 批准号:
    23K15867
  • 财政年份:
    2023
  • 资助金额:
    $ 18.02万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了