Engineering Next-Generation Nanoparticles One Layer at a Time
一次一层地设计下一代纳米粒子
基本信息
- 批准号:10528938
- 负责人:
- 金额:$ 4.83万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:AdsorptionAffectAntibodiesAntineoplastic AgentsArchitectureBindingBiologicalBiological AvailabilityCOVID-19 vaccineCancer ControlCancer ModelCellsCharacteristicsChargeChemistryClinicalCytoplasmDepositionDrug ControlsDrug Delivery SystemsDrug KineticsEffectivenessElectrostaticsEngineeringFDA approvedFilmFluorescence Resonance Energy TransferFormulationGoalsHalf-LifeHydrogen BondingImmunotherapeutic agentIn VitroInterleukin-12Ionic StrengthsKineticsKnowledgeLibrariesLiposomesMalignant NeoplasmsMalignant neoplasm of ovaryMediatingMentorsMethodsModelingModernizationModificationMolecular ConformationMonitorNucleic AcidsOncogenesOperative Surgical ProceduresPharmaceutical PreparationsPhasePolyethylene GlycolsPolymersPopulationPre-Clinical ModelPrevalenceProcessPropertyProteinsRadiationResearchResearch Project GrantsRiskSaltsSerumSerum ProteinsStructureSurfaceSystemTechniquesTherapeuticTimeTissuesToxic effectTransfectionTreatment EfficacyTumor TissueWaterWorkbasebiomaterial compatibilitycancer cellcancer immunotherapycancer therapycancer typechemotherapycrosslinkcytokinedelivery vehicledensitydesignethylene glycolexperienceextracellulargene therapyimmunogenicimmunoreactivityimprovedin vivomacromoleculenanomaterialsnanoparticlenext generationnucleic acid deliveryparticlepre-clinicalrational designreceptorsmall moleculespatiotemporalsuccesssymposiumtooltrendtumortumor microenvironmentuptake
项目摘要
Project Summary/Abstract
Cancer treatment currently relies on surgery, radiation, and systemic chemotherapy. While these techniques
have greatly improved cancer therapy, they also risk damaging healthy tissue and have incomplete elimination
of the cancer. The use of nanoparticles (NPs) as drug delivery vehicles may reduce these issues by specifically
accumulating in tumor tissue. Further NPs can improve the bioavailability of drugs, widening the range of
potential therapeutics for cancer treatment. Although there have been some successes in the NP field that led
to clinically approved formulations, most have relied on passive means of accumulation and depend on surface
conjugation with polyethylene glycol (PEG) chains. Unfortunately, passive accumulation may not benefit some
cancer types and recent wide-spread use of PEG in commercial products has led to prevalence of anti-PEG
antibodies in the population which risk reducing efficacy of PEG-based therapeutics. Accordingly, there is a great
need to engineer next-generation NPs with improved properties for cancer treatment without the use of PEG.
One promising NP system for cancer drug delivery is layer-by-layer (LbL) NPs which have shown great promise
in preclinical models of cancer as a delivery vehicle for small molecules, nucleic acids or macromolecules. LbL
consists of a simple assembly method involving the alternating adsorption of polymeric species from water onto
a substrate which can be mediated by electrostatics, hydrogen-bonding or other molecular interactions. This
process allows for facile surface modification of NPs which has been shown to enable cancer cell targeting and
to control subcellular localization. However, there is a dearth of knowledge on how to monitor and control the
disassembly of the LbL structure to improve the NP stability and enable precise spatiotemporal control of drug
delivery via LbL-NPs. During the F99 phase, I will explore how to modulate the layer architecture in layer-by-
layer (LbL) NPs. In this project, the effects of solution conditions during layering and other key layer
characteristics will be investigated. Particles will be loaded with interleukin-12, a potent immunostimulatory
protein, to evaluate treatment efficacy of optimized formulations in vitro and in an in vivo metastatic ovarian
cancer model. During the K00 phase, the focus will transition from systemic stability towards characterization of
cellular uptake and intracellular disassembly targeted at gene therapy for cancer treatment. Gene therapy has
had many new exciting breakthroughs in the last decades, but its use in cancer treatment has been limited due
to poor targeting and low transfection efficacy. I will design a library of NP formulations and characterize their
uptake and intracellular disassembly in vitro and in vivo to determine key NP properties that can modulate gene
therapy efficacy. Further, I will design and optimize nucleic acid combinations of new immunotherapeutic
constructs to deliver via the optimized gene therapy formulations.
项目摘要/摘要
癌症治疗目前依赖于手术,放射和全身化疗。而这些技术
癌症治疗大大改善了,它们也有损害健康组织的风险,并且不完全消除
癌症。使用纳米颗粒(NP)作为药物输送车可能会特别减少这些问题
积聚在肿瘤组织中。进一步的NP可以改善药物的生物利用度,扩大了
癌症治疗的潜在治疗剂。尽管在NP领域取得了一些成功
为了获得临床认可的配方,大多数依赖于被动的积累手段,并依赖于表面
与聚乙烯乙二醇(PEG)链结合。不幸的是,被动积累可能不会受益
癌症类型和最近在商业产品中广泛使用PEG已导致抗PEG患病率
人群中有可能降低基于PEG的治疗疗法的抗体。因此,有一个很棒的
需要在不使用PEG的情况下设计具有改善癌症治疗特性的下一代NP。
癌症药物输送的一种有希望的NP系统是逐层(LBL)NP,它表现出巨大的希望
在癌症的临床前模型中,作为小分子,核酸或大分子的递送载体。 lbl
由一种简单的组装方法组成,涉及从水到水到
可以通过静电,氢键或其他分子相互作用介导的底物。这
过程允许对NP的易于表面修饰,这已证明可以实现癌细胞靶向和
控制亚细胞定位。但是,关于如何监视和控制的知识很少
拆卸LBL结构以提高NP稳定性并实现药物的精确时空控制
通过lbl-nps交付。在F99阶段,我将探索如何在逐个图中调节图层体系结构
层(LBL)NP。在该项目中,分层和其他键层期间解决方案条件的影响
将研究特征。颗粒将装有白介素12,这是一种有效的免疫刺激性
蛋白质,以评估优化配方在体外和体内转移性卵巢中的治疗功效
癌症模型。在K00阶段,重点将从系统稳定性转变为表征
细胞摄取和针对癌症治疗基因治疗的细胞内拆卸。基因疗法具有
在过去的几十年中,有许多新的激动人心的突破,但是由于其在癌症治疗中的使用受到限制
靶向差和转染功效低。我将设计一个NP配方库,并将其描述
在体外和体内摄取和细胞内拆卸,以确定可以调节基因的关键NP特性
治疗功效。此外,我将设计和优化新的免疫治疗的核酸组合
通过优化的基因治疗制剂传递的结构。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ivan Susin Pires其他文献
Ivan Susin Pires的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ivan Susin Pires', 18)}}的其他基金
Engineering Next-Generation Nanoparticles One Layer at a Time
一次一层地设计下一代纳米粒子
- 批准号:
10668497 - 财政年份:2022
- 资助金额:
$ 4.83万 - 项目类别:
相似国自然基金
YTHDF3调控CXCL13表达影响黑色素瘤免疫微环境及PD-1抗体疗效的机制
- 批准号:82303866
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
AID介导抗体重链非编码区重组调控质膜BCR密度并影响记忆B细胞命运决定的研究
- 批准号:32370948
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
P29单克隆抗体的3-羟基丁酰化修饰对其稳定性影响及提升抗泡型包虫病作用的研究
- 批准号:82360402
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
母传抗体水平和疫苗初种年龄对儿童麻疹特异性抗体动态变化的影响
- 批准号:82304205
- 批准年份:2023
- 资助金额:20 万元
- 项目类别:青年科学基金项目
心衰患者中单克隆β1-肾上腺素受体自身抗体的筛选及其对受体构象影响的研究
- 批准号:32271156
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
相似海外基金
The immunogenicity and pathogenicity of HLA-DQ in solid organ transplantation
HLA-DQ在实体器官移植中的免疫原性和致病性
- 批准号:
10658665 - 财政年份:2023
- 资助金额:
$ 4.83万 - 项目类别:
Probing in situ higher order structures of monoclonal antibodies at water-air and water-oil interfaces via high-field nuclear magnetic resonance spectroscopy for viral infections
通过高场核磁共振波谱技术在水-空气和水-油界面原位探测单克隆抗体的高阶结构以检测病毒感染
- 批准号:
10593377 - 财政年份:2023
- 资助金额:
$ 4.83万 - 项目类别:
Engineered DNA-particles to model immune events in systemic lupus erythematosus
工程 DNA 颗粒模拟系统性红斑狼疮的免疫事件
- 批准号:
10644574 - 财政年份:2023
- 资助金额:
$ 4.83万 - 项目类别:
Engineering Next-Generation Nanoparticles One Layer at a Time
一次一层地设计下一代纳米粒子
- 批准号:
10668497 - 财政年份:2022
- 资助金额:
$ 4.83万 - 项目类别:
Design and development of a novel, thermostable, and inhalable dry powder COVID-19 vaccine
新型热稳定性可吸入干粉 COVID-19 疫苗的设计和开发
- 批准号:
10611975 - 财政年份:2022
- 资助金额:
$ 4.83万 - 项目类别: